Title:
|
Ridgelet transform on tempered distributions (English) |
Author:
|
Roopkumar, R. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
51 |
Issue:
|
3 |
Year:
|
2010 |
Pages:
|
431-439 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We prove that ridgelet transform $R:\mathscr{S}(\mathbb{R}^2)\to \mathscr{S} (\mathbb{Y})$ and adjoint ridgelet transform $R^\ast:\mathscr{S}(\mathbb{Y}) \to \mathscr{S}(\mathbb{R}^2)$ are continuous, where $\mathbb{Y}=\mathbb{R}^+\times \mathbb{R}\times [0,2\pi]$. We also define the ridgelet transform $\mathcal{R}$ on the space $\mathscr{S}^\prime(\mathbb{R}^2)$ of tempered distributions on $\mathbb{R}^2$, adjoint ridgelet transform $\mathcal{R}^\ast$ on $\mathscr{S}^\prime(\mathbb{Y})$ and establish that they are linear, continuous with respect to the weak$^\ast$-topology, consistent with $R$, $R^\ast$ respectively, and they satisfy the identity $(\mathcal{R}^\ast \circ \mathcal{R})(u) = u$, $u\in \mathscr{S}^\prime(\mathbb{R}^2)$. (English) |
Keyword:
|
ridgelet transform |
Keyword:
|
tempered distributions |
Keyword:
|
wavelets |
MSC:
|
42C40 |
MSC:
|
44A15 |
MSC:
|
65T60 |
idZBL:
|
Zbl 1222.46029 |
idMR:
|
MR2741876 |
. |
Date available:
|
2010-09-02T14:14:55Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140719 |
. |
Reference:
|
[1] Candès E.J.: Harmonic analysis of neural networks.Appl. Comput. Harmon. Anal. 6 (1999), 197–218. MR 1676767, 10.1006/acha.1998.0248 |
Reference:
|
[2] Constantine G.M., Savits T.H.: A multivariate Faa di Bruno formula with applications.Trans. Amer. Math. Soc. 348 (1996), 503–520. Zbl 0846.05003, MR 1325915, 10.1090/S0002-9947-96-01501-2 |
Reference:
|
[3] Deans S.R.: The Radon Transform and Some of its Applications.John Wiley & Sons, New York, 1983. Zbl 1121.44004, MR 0709591 |
Reference:
|
[4] Holschneider M.: Wavelets. An Analysis Tool.Clarendon Press, New York, 1995. Zbl 0952.42016, MR 1367088 |
Reference:
|
[5] Pathak R.S.: The wavelet transform of distributions.Tohoku Math. J. 56 (2004), 411–421. Zbl 1078.42029, MR 2075775, 10.2748/tmj/1113246676 |
Reference:
|
[6] Roopkumar R.: Ridgelet transform on square integrable Boehmains.Bull. Korean Math. Soc. 46 (2009), 835–844. MR 2554278, 10.4134/BKMS.2009.46.5.835 |
Reference:
|
[7] Rudin W.: Functional Analysis.McGraw-Hill, New York, 1973. Zbl 0867.46001, MR 0365062 |
Reference:
|
[8] Starck J.L., Candès E.J., Donoho D.: The Curvelet Transform for Image Denoising.IEEE Trans. Image Process. 11 (2002), 670–684. MR 1929403, 10.1109/TIP.2002.1014998 |
. |