Previous |  Up |  Next

Article

Title: The distribution of the number of nodes in the relative interior of the typical I-segment in homogeneous planar anisotropic STIT Tessellations (English)
Author: Thäle, Christoph
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 3
Year: 2010
Pages: 503-512
Summary lang: English
.
Category: math
.
Summary: A result about the distribution of the number of nodes in the relative interior of the typical I-segment in homogeneous and isotropic random tessellations stable under iteration (STIT tessellations) is extended to the anisotropic case using recent findings from Schreiber/Thäle, Typical geometry, second-order properties and central limit theory for iteration stable tessellations, arXiv:1001.0990 [math.PR] (2010). Moreover a new expression for the values of this probability distribution is presented in terms of the Gauss hypergeometric function ${_2F_1}$. (English)
Keyword: hypergeometric function
Keyword: iteration/nesting
Keyword: random tessellation
Keyword: segments
Keyword: stochastic geometry
Keyword: stochastic stability
MSC: 05B45
MSC: 52A22
MSC: 60D05
MSC: 60G55
idZBL: Zbl 1224.60015
idMR: MR2741883
.
Date available: 2010-09-02T14:21:05Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/140726
.
Reference: [1] Abramowitz M., Stegun I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.Dover, New York, 1965, online version under http://www.math.ucla.edu/ cbm/aands/index.htm. Zbl 0643.33001, MR 1225604
Reference: [2] Mecke J., Nagel W., Weiss V.: Length distributions of edges in planar stationary and isotropic STIT tessellations.J. Contemp. Math. Anal. 42 (2007), 28–43. Zbl 1155.60005, MR 2361580, 10.3103/S1068362307010025
Reference: [3] Mecke J., Nagel W., Weiss V.: Some distributions for I-segments of planar random homogeneous STIT tessellations.Math. Nachr. (2010)(to appear). MR 2832660
Reference: [4] Nagel W., Weiss V.: Crack STIT tessellations: characterization of stationary random tessellations stable with respect to iteration.Adv. in Appl. Probab. 37 (2005), 859–883. Zbl 1098.60012, MR 2193987, 10.1239/aap/1134587744
Reference: [5] Schneider R., Weil W.: Stochastic and Integral Geometry.Springer, Berlin, 2008. Zbl 1175.60003, MR 2455326
Reference: [6] Schreiber T., Thäle C.: Typical geometry, second-order properties and central limit theory for iteration stable tessellations.arXiv:1001.0990 [math.PR] (2010). MR 2796670
Reference: [7] Thäle C.: Moments of the length of line segments in homogeneous planar STIT tessellations.Image Anal. Stereol. 28 (2009), 69–76. MR 2538063, 10.5566/ias.v28.p69-76
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-3_12.pdf 514.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo