Previous |  Up |  Next

Article

Title: Conley type index and Hamiltonian inclusions (English)
Author: Dzedzej, Zdzisław
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 49
Issue: 1
Year: 2010
Pages: 33-47
Summary lang: English
.
Category: math
.
Summary: This paper is based mainly on the joint paper with W. Kryszewski [Dzedzej, Z., Kryszewski, W.: Conley type index applied to Hamiltonian inclusions. J. Math. Anal. Appl. 347 (2008), 96–112.], where cohomological Conley type index for multivalued flows has been applied to prove the existence of nontrivial periodic solutions for asymptotically linear Hamiltonian inclusions. Some proofs and additional remarks concerning definition of the index and special cases are given. (English)
Keyword: Conley index
Keyword: multivalued dynamical system
Keyword: Hamiltonian inclusion
MSC: 34A60
MSC: 37B30
MSC: 37J45
idZBL: Zbl 1229.37011
idMR: MR2797521
Note: Supported by the Ministry of sciences and higher education, Poland, under grant N N 201 394037 (English)
.
Date available: 2010-09-13T06:54:00Z
Last updated: 2013-09-18
Stable URL: http://hdl.handle.net/10338.dmlcz/140735
.
Reference: [1] Amann, H., Zehnder, E.: Periodic solutions of asymptotically linear Hamiltonian systems.Manuscripta Math. 32 (1980), 149–189. Zbl 0443.70019, MR 0592715, 10.1007/BF01298187
Reference: [2] Bobylev, N. A., Bulatov, A. V., Kuznetsov, Yu. O.: An approximation scheme for defining the Conley index of isolated critical points.Diff. Equ. 40 (2004), 1539–1544. Zbl 1084.37015, MR 2200861
Reference: [3] Chang, K. C., Liu, J. Q., Liu, M. J.: Nontrivial periodic solutions for strong resonance Hamiltonian systems.Ann. Inst. Henri Poincare 14 (1997), 103–117. Zbl 0881.34061, MR 1437190, 10.1016/S0294-1449(97)80150-3
Reference: [4] Clarke, F. H.: Periodic solutions to Hamiltonian inclusions.J. Diff. Eq. 40 (1981), 1–6. Zbl 0461.34030, MR 0614215, 10.1016/0022-0396(81)90007-3
Reference: [5] Clarke, F. H.: Optimization and Nonsmooth Analysis.Wiley, New York, 1983. Zbl 0582.49001, MR 0709590
Reference: [6] Conley, C.: Isolated Invariant Sets and the Morse Index.CBMS 38 Amer. Math. Society, Providence, Rhode Island, 1978. Zbl 0397.34056, MR 0511133
Reference: [7] Dzedzej, Z.: On the Conley index in Hilbert spaces – a multivalued case.Banach Center Publ. 77 Warszawa, 2007, 61–68. Zbl 1114.37013, MR 2338575
Reference: [8] Dzedzej, Z., Gabor, G.: On homotopy Conley index for multivalued flows in Hilbert spaces.to appear.
Reference: [9] Dzedzej, Z., Kryszewski, W.: Conley type index applied to Hamiltonian inclusions.J. Math. Anal. Appl. 347 (2008), 96–112. Zbl 1149.37008, MR 2433828, 10.1016/j.jmaa.2008.05.081
Reference: [10] Emelyanov, S. V., Korovin, S. K., Bobylev, N. A., Bulatov, A. V.: Homotopy of Extremal Problems.W. de Gruyter, Berlin, 2007. Zbl 1141.49001, MR 2352609
Reference: [11] Fei, G. H.: Maslov-type index and periodic solution of asymptotically linear Hamiltonian systems which are resonant at infinity.J. Differential Equations 121 (1995), 121–133. Zbl 0831.34046, MR 1348538, 10.1006/jdeq.1995.1124
Reference: [12] Gabor, G.: Homotopy index for multivalued flows on sleek sets.Set-valued Analysis 13 (2005), 125–149. Zbl 1096.54016, MR 2148132, 10.1007/s11228-004-4109-9
Reference: [13] Gȩba, K., Izydorek, M., Pruszko, A.: The Conley index in Hilbert spaces and its applications.Studia Math. 134 (1999), 217–233. MR 1685454
Reference: [14] Górniewicz, L.: Topological Fixed Point Theory of Multivalued Mappings.Kluwer, Dordrecht–Boston–London, 1999.
Reference: [15] Han, Z. Q.: Computations of cohomology groups and nontrivial periodic solutions of Hamiltonian systems.J. Math. Anal. Appl. 330 (2007), 259–275. Zbl 1115.37056, MR 2302921, 10.1016/j.jmaa.2006.07.047
Reference: [16] Izydorek, M.: A cohomological index in Hilbert spaces and applications to strongly indefinite problems.J. Differential Equations 170 (2001), 22–50. MR 1813098, 10.1006/jdeq.2000.3818
Reference: [17] Izydorek, M., Rybakowski, K.: On the Conley index in the absence of uniqueness.Fund. Math. 171 (2002), 31–52. MR 1879882, 10.4064/fm171-1-2
Reference: [18] Kryszewski, W., Szulkin, A.: An infinite dimensional Morse theory with applications.Trans. Amer. Math. Soc. 349 (1997), 3181–3234. Zbl 0892.58015, MR 1422612, 10.1090/S0002-9947-97-01963-6
Reference: [19] Kunze, M., Küpper, T., Li, Y.: On Conley index theory for non-smooth dynamical systems.Differential Integral Equations 13 (2000), 479–502. MR 1750037
Reference: [20] Mrozek, M.: A cohomological index of Conley type for multivalued admissible flows.J. Differential Equations 84 (1990), 15–51. MR 1042657, 10.1016/0022-0396(90)90125-9
Reference: [21] Rybakowski, K.: The Homotopy Index and Partial Differential Equations.Springer, Berlin, 1987. Zbl 0628.58006, MR 0910097
Reference: [22] Szulkin, A.: Cohomology and Morse theory for strongly indefinite functionals.Math. Z. 209 (1992), 375–418. Zbl 0735.58012, MR 1152264, 10.1007/BF02570842
Reference: [23] Szulkin, A., Zhou, W.: Infinite dimensional cohomology groups and periodic solutions of asymptotically linear Hamiltonian systems.J. Differential Equations 174 (2001), 369–391. MR 1846740, 10.1006/jdeq.2000.3942
.

Files

Files Size Format View
ActaOlom_49-2010-1_4.pdf 491.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo