Previous |  Up |  Next

Article

Title: Numerical algorithms for perspective shape from shading (English)
Author: Breuss, Michael
Author: Cristiani, Emiliano
Author: Durou, Jean-Denis
Author: Falcone, Maurizio
Author: Vogel, Oliver
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 2
Year: 2010
Pages: 207-225
Summary lang: English
.
Category: math
.
Summary: The Shape-From-Shading (SFS) problem is a fundamental and classic problem in computer vision. It amounts to compute the 3-D depth of objects in a single given 2-D image. This is done by exploiting information about the illumination and the image brightness. We deal with a recent model for Perspective SFS (PSFS) for Lambertian surfaces. It is defined by a Hamilton–Jacobi equation and complemented by state constraints boundary conditions. In this paper we investigate and compare three state-of-the-art numerical approaches. We begin with a presentation of the methods. Then we discuss the use of some acceleration techniques, including cascading multigrid, for all the tested algorithms. The main goal of our paper is to analyze and compare recent solvers for the PSFS problem proposed in the literature. (English)
Keyword: hyperbolic partial differential equation
Keyword: Hamilton–Jacobi equation
Keyword: finite difference method
Keyword: semi-Lagrangian scheme
Keyword: Shape-from-Shading
MSC: 35L60
MSC: 65D19
MSC: 65N06
MSC: 65N12
MSC: 68T45
MSC: 68U10
idZBL: Zbl 1198.68266
idMR: MR2663598
.
Date available: 2010-09-13T16:38:36Z
Last updated: 2013-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/140741
.
Reference: [1] Bornemann, F., Deuflhard, P.: Cascadic multigrid methods.In: Domain Decomposition Methods in Sciences and Engineering (R. Glowinski, J. Periaux, Z. Shi, and O. Widlund, eds.), John Wiley, New York 1997, pp. 205–212. MR 1943461
Reference: [2] Breuß, M., Vogel, O., Weickert, J.: Efficient numerical techniques for perspective shape from shading.In: Proc. Algoritmy 2009, Podbanské 2009 (A. Handlovičová, P. Frolkovič, K. Mikula, and D. Ševcovič, eds.), Slovak University of Technology, Bratislava 2009, pp. 11–20.
Reference: [3] Camilli, F., Prados, E.: Shape-from-Shading with discontinuous image brightness.Appl. Numer. Math. 56 (2006), 9, 1225–1237. Zbl 1096.65059, MR 2244973, 10.1016/j.apnum.2006.03.007
Reference: [4] Courteille, F., Crouzil, A., Durou, J.-D, Gurdjos, P.: Towards shape from shading under realistic photographic conditions.In: Proc. 17th Internat. Conf. Patt. Recog. (vol. II), Cambridge 2004, pp. 277–280.
Reference: [5] Cristiani, E.: Fast Marching and Semi-Lagrangian Methods for Hamilton–Jacobi Equations with Applications.Ph.D. Thesis, Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, Università di Roma “La Sapienza”, Rome 2007.
Reference: [6] Cristiani, E., Falcone, M., Seghini, A.: Numerical solution of the perspective Shape-from-Shading problem.In: Proc. Control Systems: Theory, Numerics and Applications, Rome 2005. Proceedings of Science (CSTNA2005) 008, http://pos.sissa.it/
Reference: [7] Cristiani, E., Falcone, M., Seghini, A.: Some remarks on perspective Shape-from-Shading models.In: Proc. 1st Internat. Conf. Scale Space and Variational Methods in Comput. Vis., Ischia 2007 (F. Sgallari, A. Murli, and N. Paragios, eds., Lecture Notes in Comput. Sci. 4485), Springer, Berlin 2008, pp. 276–287.
Reference: [8] Durou, J.-D., Falcone, M., Sagona, M.: Numerical methods for Shape-from-Shading: A new survey with nenchmarks.Comp. Vis. and Image Underst. 109 (2008), 1, 22–43. 10.1016/j.cviu.2007.09.003
Reference: [9] Falcone, M., Ferretti, R.: Semi–Lagrangian schemes for Hamilton–Jacobi equations, discrete representation formulae and Godunov methods.J. Comput. Phys. 175 (2002), 2, 559–575. Zbl 1007.65060, MR 1880118, 10.1006/jcph.2001.6954
Reference: [10] Foley, J. D., Dam, A. van, Feiner, S. K., Hughes, J. F.: Computer Graphics: Principles and Practice.Addison–Wesley, Reading 1996.
Reference: [11] Hoppe, R. H. W.: Multigrid methods for Hamilton–Jacobi–Bellman equations.Numer. Math. 49 (1986), 2-3, 239–254. MR 0848524, 10.1007/BF01389627
Reference: [12] Horn, B. K. P.: Obtaining shape from shading information.In: The Psychology of Computer Vision (P. H. Winston, ed.), McGraw-Hill, New York 1975, Ch. 4, pp. 115–155. MR 0416135
Reference: [13] Horn, B. K. P.: Robot Vision.MIT Press, Cambridge Mass. 1986.
Reference: [14] Horn, B. K. P., Brooks, M. J.: Shape from Shading.Artificial Intelligence Series, MIT Press, Cambridge Mass.1989. Zbl 0629.65125, MR 1062877
Reference: [15] Okatani, T., Deguchi, K.: Shape reconstruction from an endoscope image by Shape from Shading Technique for a point light source at the projection center.Comp. Vis. and Image Underst. 66 (1997), 2, 119–131. 10.1006/cviu.1997.0613
Reference: [16] Prados, E., Faugeras, O.: “Perspective Shape from Shading” and viscosity solutions.In: Proc. 9th IEEE Internat. Conf. Comp. Vis. (vol. II), Nice 2003, pp. 826–831.
Reference: [17] Prados, E., Faugeras, O.: Unifying approaches and removing unrealistic assumptions in Shape From Shading: Mathematics can help.In: Proc. 8th Eur. Conf. Comp. Vis. (vol. IV), Prague 2004, Lecture Notes in Comp. Sci.3024, pp. 141–154. Zbl 1098.68844
Reference: [18] Prados, E., Camilli, F., Faugeras, O.: A unifying and rigorous shape from shading method adapted to realistic data and applications.J. Math. Imag. and Vis. 25 (2006), 3, 307–328. MR 2283609, 10.1007/s10851-006-6899-x
Reference: [19] Prados, E., Camilli, F., Faugeras, O.: A viscosity solution method for shape-from-shading without image boundary data.M2AN Math. Model. Numer. Anal. 40 (2006), 2, 393–412. Zbl 1112.49025, MR 2241829, 10.1051/m2an:2006018
Reference: [20] Rosenfeld, A.: Multiresolution Image Processing and Analysis.Springer, Berlin 1984. Zbl 0537.68086
Reference: [21] Rouy, E., Tourin, A.: A Viscosity solutions approach to Shape-from-Shading.SIAM J. Numer. Anal. 29 (1992), 3, 867–884. Zbl 0754.65069, MR 1163361, 10.1137/0729053
Reference: [22] Tankus, A., Sochen, N., Yeshurun, Y.: A new perspective [on] Shape-from-Shading.In: Proc. 9th IEEE Internat. Conf. Comp. Vis. (vol. II), Nice 2003, pp. 862–869.
Reference: [23] Vogel, O., Breuß, M., Weickert, J.: A direct numerical approach to perspective Shape-from-Shading.In: Proc. Vision, Modeling, and Visualization Workshop 2007, Saarbrücken 2007 (H. Lensch, B. Rosenhahn, H.-P. Seidel, P. Slusallek, and J. Weickert, eds.), pp. 91–100.
Reference: [24] Zhang, R., Tsai, P.-S., Cryer, J. E., Shah, M.: Shape from Shading: A survey.IEEE Trans. Patt. Anal. Mach. Intell. 21 (1999), 8, 690–706. 10.1109/34.784284
Reference: [25] Zhao, H.: A fast sweeping method for eikonal equations.Math. Comp. 74 (2004), 250, 603–627. Zbl 1070.65113, MR 2114640, 10.1090/S0025-5718-04-01678-3
.

Files

Files Size Format View
Kybernetika_46-2010-2_2.pdf 894.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo