Previous |  Up |  Next


image processing; embryogenesis; image analysis; finite volume method; image filtering; object counting; segmentation; partial differential equation
In this paper, we introduce a set of methods for processing and analyzing long time series of 3D images representing embryo evolution. The images are obtained by in vivo scanning using a confocal microscope where one of the channels represents the cell nuclei and the other one the cell membranes. Our image processing chain consists of three steps: image filtering, object counting (center detection) and segmentation. The corresponding methods are based on numerical solution of nonlinear PDEs, namely the geodesic mean curvature flow model, flux-based level set center detection and generalized subjective surface equation. All three models have a similar character and therefore can be solved using a common approach. We explain in details our semi-implicit time discretization and finite volume space discretization. This part is concluded by a short description of parallelization of the algorithms. In the part devoted to experiments, we provide the experimental order of convergence of the numerical scheme, the validation of the methods and numerous experiments with the data representing an early developmental stage of a zebrafish embryo.
[1] Aoyama, Y., Nakano, J.: RS/6000 SP: Practical MPI Programming. IBM 1999.
[2] Bourgine, P., Frolkovič, P., Mikula, K., Peyriéras, N., Remešíková, M.: Extraction of the intercellular skeleton from 2D microscope images of early embryogenesis. (Lecture Notes in Comp. Sci., 5567.) (Proc. 2nd Internat. Conference on Scale Space and Variational Methods in Computer Vision, Voss 2009), Springer, Berlin pp. 38–49.
[3] Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Internat. J. Comput. Vision 22 (1997), 61–79. DOI 10.1023/A:1007979827043 | Zbl 0894.68131
[4] Chen, Y., Vemuri, B. C., Wang, L.: Image denoising and segmentation via nonlinear diffusion. Comp. Math. Appl. 39 (2000), 131–149. DOI 10.1016/S0898-1221(00)00050-X | MR 1742478 | Zbl 0951.68556
[5] Corsaro, S., Mikula, K. , Sarti, A., Sgallari, F.: Semi-implicit co-volume method in 3D image segmentation. SIAM J. Sci. Comput. 28 (2006), 6, 2248–2265. DOI 10.1137/060651203 | MR 2272260
[6] Frolkovič, P., Mikula, K.: Flux-based level set method: A finite volume method for evolving interfaces. Appl. Numer. Math. 57 (2007), 4, 436–454. DOI 10.1016/j.apnum.2006.06.002 | MR 2310759
[7] Frolkovič, P., Mikula, K., Peyrieras, N., Sarti, A.: A counting number of cells and cell segmentation using advection-diffusion equations. Kybernetika 43 (2007), 6, 817–829. MR 2388396
[8] Huttenlocher, D. P., Klanderman, G. A., Rucklidge, W. J.: Comparing images using the Hausdorff distance. IEEE Trans. Pattern Analysis and Machine Intelligence 15 (1993), 9, xxx–xxx.
[9] Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Conformal curvature flows: from phase transitions to active vision. Arch. Rational Mech. Anal. 134 (1996), 275–301. DOI 10.1007/BF00379537 | MR 1412430 | Zbl 0937.53029
[10] Krivá, Z., Mikula, K., Peyriéras, N., Rizzi, B., Sarti, A.: Zebrafish early embryogenesis 3D image filtering by nonlinear partial differential equations. Medical Image Analysis. Submitted for publication.
[11] Mikula, K., Peyriéras, N., Remešíková, M., Sarti, A.: 3D embryogenesis image segmentation by the generalized subjective surface method using the finite volume technique. In: Proc. FVCA5 – 5th International Symposium on Finite Volumes for Complex Applications, Hermes Publ. Paris 2008.
[12] Mikula, K., Remešíková, M.: Finite volume schemes for the generalized subjective surface equation in image segmentation. Kybernetika 45 (2009), 4, xxx–xxx. MR 2588630
[13] Mikula, K., Sarti, A.: Parallel co-volume subjective surface method for 3D medical image segmentation. Parametric and Geometric Deformable Models: An application in Biomaterials and Medical Imagery, Vol. II, Springer Publishers, 2007, pp. 123–160.
[14] Sarti, A., Malladi, R., Sethian, J. A.: Subjective surfaces: A method for completing missing boundaries. In: Proc. National Academy of Sciences of the United States of America 12 (2000), 97, 6258–6263. MR 1760935 | Zbl 0966.68214
[15] Tassy, O., Daian, F., Hudson, C., Bertrandt, V., Lemaire, P.: A quantitative approach to the study of the cell shapes and interactions during early chordate embryogenesis. Currrent Biology 16 (2006), 345–358. DOI 10.1016/j.cub.2005.12.044
[16] Yushkevich, P. A., Piven, J., Hazlett, H. Cody, Smith, R. Gimpel, Ho, S., Gee, J. C., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 31 (2006), 3, 1116–28. DOI 10.1016/j.neuroimage.2006.01.015
[17] Zanella, C., Campana, M., Rizzi, B., Melani, C., Sanguinetti, G., Bourgine, P., Mikula, K., Peyriéras, N., Sarti, A.: Cells segmentation from 3-D confocal images Of early zebrafish embryogenesis. IEEE Trans. Image Process. 19 (2010), 3, 770–781. DOI 10.1109/TIP.2009.2033629 | MR 2756569
[18] Zhang, J. W., Han, G. Q., Wo, Y.: Image registration based on generalized and mean Hausdorff distances. In: Proc. Fourth International Conference on Machine Learning and Cybernetics, Guangzhou 2005.
Partner of
EuDML logo