Previous |  Up |  Next

Article

Keywords:
mean-CVaR model; mixed-integer value function; stability analysis; contamination techniques; derivatives of optimal value function
Summary:
In this paper, we study local stability of the mean-risk model with Conditional Value at Risk measure where the mixed-integer value function appears as a loss variable. This model has been recently introduced and studied in~Schulz and Tiedemann [16]. First, we generalize the qualitative results for the case with random technology matrix. We employ the contamination techniques to quantify a possible effect of changes in the underlying probability distribution on the optimal value. We use the generalized qualitative results to express the explicit formula for the directional derivative of the local optimal value function with respect to the underlying probability measure. The derivative is used to construct the bounds. Similarly, we can approximate the behavior of the local optimal value function with respect to the changes of the risk-aversion parameter which determines our aversion to risk.
References:
[1] Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-linear Parametric Optimization. Akademie-Verlag, Berlin 1982. Zbl 0502.49002
[2] Billingsley, P.: Convergence of Probability Measures. (Wiley Series in Probability and Statistics.) Second edition. Wiley, New York 1999. MR 1700749 | Zbl 0944.60003
[3] Blair, C. E., Jeroslow, R. G.: The value function of a mixed integer program: I. Discrete Mathematics 19 (1977), 121–138. DOI 10.1016/0012-365X(77)90028-0 | MR 0475841 | Zbl 0545.90079
[4] Dobiáš, P.: Contamination for stochastic integer programs. Bulletin of the Czech Econometric Society 10 (2003), No. 18.
[5] Dupačová, J.: Stability in stochastic programming with recourse. Contaminated distributions. Mathematical Programming Study 27 (1986), 133–144. DOI 10.1007/BFb0121117 | MR 0836754
[6] Dupačová, J.: Stability and sensitivity-analysis for stochastic programming. Ann. Oper. Res. 27 (1990), 115–142. DOI 10.1007/BF02055193 | MR 1088990
[7] Dupačová, J.: Output analysis for approximated stochastic programs. In: Stochastic Optimization: Algorithms and Applications (S. Uryasev and P. M. Pardalos, Eds.), Kluwer Academic Publishers, Dordrecht 2001, pp. 1–29. MR 1835091
[8] Dupačová, J.: Risk objectives in two-stage stochastic programming models. Kybernetika 44 (2008), 2, 227–242. MR 2428221
[9] Dupačová, J., Polívka, J.: Stress testing for VaR and CVaR. Quantitative Finance 27 (2007), 4, 411–421. DOI 10.1080/14697680600973323 | MR 2354778
[10] Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Dordrecht 1999. MR 1784937 | Zbl 1181.90237
[11] Rockafellar, T. R., Uryasev, S.: Conditional value-at-risk for genera loss distributions. J. Banking and Finance 26 (2002), 1443–1471. DOI 10.1016/S0378-4266(02)00271-6
[12] Römisch, W.: Stability of Stochastic Programming Problems. In: Stochastic Programming (A. Ruszczynski and A. Shapiro eds.), Handbooks in Operations Research and Management Science Vol. 10, Elsevier, Amsterdam (2003), 483-554. MR 2052760
[13] Römisch, W., Schultz, R.: Multistage stochastic integer programming: an introduction. In: Online Optimization of Large Scale Systems (M. Grötschel, S. O. Krumke, and J. Rambau, eds.), Springer-Verlag, Berlin 2001, pp. 581–600.
[14] Schultz, R.: On structure and stability in stochastic programs with random technology matrix and complete integer recourse. Mathematical Programming 26 (1995), 73–89. DOI 10.1007/BF01585929 | MR 1358547 | Zbl 0841.90101
[15] Schultz, R.: Stochastic programming with integer variables. Mathematical Programming, Ser. B 97 (2003), 285–309. MR 2004400 | Zbl 1035.90053
[16] Schultz, R., Tiedemann, S.: Conditional value-at-risk in stochastic programs with mixed-integer recourse. Mathematical Programming, Ser. B 105 (2006), 365–386. DOI 10.1007/s10107-005-0658-4 | MR 2190827 | Zbl 1085.90042
[17] Szegö, G.: Risk Measures for the 21st Century. Wiley, Chichester 2004.
[18] Wallace, S. W., Ziemba, W. T.: Applications of Stochastic Programming. (MPS-SIAM Book Series on Optimization, Volume 5.) SIAM Philadelpia 2005. Zbl 1068.90002
Partner of
EuDML logo