Previous |  Up |  Next

Article

Title: Local stability and differentiability of the Mean–Conditional Value at Risk model defined on the mixed–integer loss functions (English)
Author: Branda, Martin
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 3
Year: 2010
Pages: 362-373
Summary lang: English
.
Category: math
.
Summary: In this paper, we study local stability of the mean-risk model with Conditional Value at Risk measure where the mixed-integer value function appears as a loss variable. This model has been recently introduced and studied in~Schulz and Tiedemann [16]. First, we generalize the qualitative results for the case with random technology matrix. We employ the contamination techniques to quantify a possible effect of changes in the underlying probability distribution on the optimal value. We use the generalized qualitative results to express the explicit formula for the directional derivative of the local optimal value function with respect to the underlying probability measure. The derivative is used to construct the bounds. Similarly, we can approximate the behavior of the local optimal value function with respect to the changes of the risk-aversion parameter which determines our aversion to risk. (English)
Keyword: mean-CVaR model
Keyword: mixed-integer value function
Keyword: stability analysis
Keyword: contamination techniques
Keyword: derivatives of optimal value function
MSC: 90C11
MSC: 90C15
MSC: 90C31
MSC: 91B28
MSC: 91B30
idZBL: Zbl 1202.90203
idMR: MR2676075
.
Date available: 2010-09-13T16:45:08Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140752
.
Reference: [1] Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-linear Parametric Optimization.Akademie-Verlag, Berlin 1982. Zbl 0502.49002
Reference: [2] Billingsley, P.: Convergence of Probability Measures.(Wiley Series in Probability and Statistics.) Second edition. Wiley, New York 1999. Zbl 0944.60003, MR 1700749
Reference: [3] Blair, C. E., Jeroslow, R. G.: The value function of a mixed integer program: I.Discrete Mathematics 19 (1977), 121–138. Zbl 0545.90079, MR 0475841, 10.1016/0012-365X(77)90028-0
Reference: [4] Dobiáš, P.: Contamination for stochastic integer programs.Bulletin of the Czech Econometric Society 10 (2003), No. 18.
Reference: [5] Dupačová, J.: Stability in stochastic programming with recourse.Contaminated distributions. Mathematical Programming Study 27 (1986), 133–144. MR 0836754, 10.1007/BFb0121117
Reference: [6] Dupačová, J.: Stability and sensitivity-analysis for stochastic programming.Ann. Oper. Res. 27 (1990), 115–142. MR 1088990, 10.1007/BF02055193
Reference: [7] Dupačová, J.: Output analysis for approximated stochastic programs.In: Stochastic Optimization: Algorithms and Applications (S. Uryasev and P. M. Pardalos, Eds.), Kluwer Academic Publishers, Dordrecht 2001, pp. 1–29. MR 1835091
Reference: [8] Dupačová, J.: Risk objectives in two-stage stochastic programming models.Kybernetika 44 (2008), 2, 227–242. MR 2428221
Reference: [9] Dupačová, J., Polívka, J.: Stress testing for VaR and CVaR.Quantitative Finance 27 (2007), 4, 411–421. MR 2354778, 10.1080/14697680600973323
Reference: [10] Miettinen, K.: Nonlinear Multiobjective Optimization.Kluwer Academic Publishers, Dordrecht 1999. Zbl 1181.90237, MR 1784937
Reference: [11] Rockafellar, T. R., Uryasev, S.: Conditional value-at-risk for genera loss distributions.J. Banking and Finance 26 (2002), 1443–1471. 10.1016/S0378-4266(02)00271-6
Reference: [12] Römisch, W.: Stability of Stochastic Programming Problems.In: Stochastic Programming (A. Ruszczynski and A. Shapiro eds.), Handbooks in Operations Research and Management Science Vol. 10, Elsevier, Amsterdam (2003), 483-554. MR 2052760
Reference: [13] Römisch, W., Schultz, R.: Multistage stochastic integer programming: an introduction.In: Online Optimization of Large Scale Systems (M. Grötschel, S. O. Krumke, and J. Rambau, eds.), Springer-Verlag, Berlin 2001, pp. 581–600.
Reference: [14] Schultz, R.: On structure and stability in stochastic programs with random technology matrix and complete integer recourse.Mathematical Programming 26 (1995), 73–89. Zbl 0841.90101, MR 1358547, 10.1007/BF01585929
Reference: [15] Schultz, R.: Stochastic programming with integer variables.Mathematical Programming, Ser. B 97 (2003), 285–309. Zbl 1035.90053, MR 2004400
Reference: [16] Schultz, R., Tiedemann, S.: Conditional value-at-risk in stochastic programs with mixed-integer recourse.Mathematical Programming, Ser. B 105 (2006), 365–386. Zbl 1085.90042, MR 2190827, 10.1007/s10107-005-0658-4
Reference: [17] Szegö, G.: Risk Measures for the 21st Century.Wiley, Chichester 2004.
Reference: [18] Wallace, S. W., Ziemba, W. T.: Applications of Stochastic Programming.(MPS-SIAM Book Series on Optimization, Volume 5.) SIAM Philadelpia 2005. Zbl 1068.90002
.

Files

Files Size Format View
Kybernetika_46-2010-3_2.pdf 484.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo