Previous |  Up |  Next

Article

Title: A note on the relation between strong and M-stationarity for a class of mathematical programs with equilibrium constraints (English)
Author: Henrion, René
Author: Outrata, Jiří
Author: Surowiec, Thomas
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 3
Year: 2010
Pages: 423-434
Summary lang: English
.
Category: math
.
Summary: In this paper, we deal with strong stationarity conditions for mathematical programs with equilibrium constraints (MPEC). The main task in deriving these conditions consists in calculating the Fréchet normal cone to the graph of the solution mapping associated with the underlying generalized equation of the MPEC. We derive an inner approximation to this cone, which is exact under an additional assumption. Even if the latter fails to hold, the inner approximation can be used to check strong stationarity via the weaker (but easier to calculate) concept of M-stationarity. (English)
Keyword: mathematical programs with equilibrium constraints
Keyword: S-stationary points
Keyword: M-stationary points
Keyword: Fréchet normal cone
Keyword: limiting normal cone
MSC: 49J53
MSC: 90C30
MSC: 90C31
MSC: 90C47
idZBL: Zbl 1225.90125
idMR: MR2676080
.
Date available: 2010-09-13T16:51:28Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140758
.
Reference: [1] Dontchev, A. L., Rockafellar, R. T.: Characterizations of strong regularity for variational inequalities over polyhedral convex sets.SIAM J. Optim. 6 (1996), 1087–1105. Zbl 0899.49004, MR 1416530, 10.1137/S1052623495284029
Reference: [2] Dontchev, A. L., Rockafellar, R. T.: Ample parameterization of variational inclusions.SIAM J. Optim. 12 (2001), 170–187. Zbl 1008.49009, MR 1870590, 10.1137/S1052623400371016
Reference: [3] Henrion, R., Jourani, A., Outrata, J. V.: On the calmness of a class of multifunctions.SIAM J. Optim. 13 (2002), 603–618. Zbl 1028.49018, MR 1951037, 10.1137/S1052623401395553
Reference: [4] Henrion, R., Römisch, W.: On M-stationary points for a stochastic equilibrium problem under equilibrium constraints in electricity spot market modeling.Appl. Math. 52 (2007), 473–494. MR 2357576, 10.1007/s10492-007-0028-z
Reference: [5] Henrion, R., Outrata, J. V., Surowiec, T.: On the coderivative of normal cone mappings to inequality systems.Nonlinear Anal. 71 (2009), 1213–1226. MR 2527541, 10.1016/j.na.2008.11.089
Reference: [6] Henrion, R., Outrata, J. V., Surowiec, T.: Analysis of M-stationary points to an EPEC modeling oligopolistic competition in an electricity spot market.Weierstraß-Institute of Applied Analysis and Stochastics, Preprint No. 1433 (2009) and submitted. MR 2527541
Reference: [7] Henrion, R., Mordukhovich, B. S., Nam, N. M.: Second-order analysis of polyhedral systems in finite and infinite dimensions with applications to robust stability of variational inequalities.SIAM J. Optim., to appear. MR 2650845
Reference: [8] Luo, Z.-Q., Pang, J.-S., Ralph, D.: Mathematical Programs with Equilibrium Constraints.Cambridge University Press, Cambridge 1996. Zbl 1139.90003, MR 1419501
Reference: [9] Mordukhovich, B. S.: Approximation Methods in Problems of Optimization and Control (in Russian).Nauka, Moscow 1988. MR 0945143
Reference: [10] Mordukhovich, B. S.: Variational Analysis and Generalized Differentiation.Vol. 1: Basic Theory. Springer, Berlin 2006.
Reference: [11] Mordukhovich, B. S.: Variational Analysis and Generalized Differentiation.Vol. 2: Applications. Springer, Berlin 2006. MR 2191745
Reference: [12] Flegel, M. L., Kanzow, C., Outrata, J. V.: Optimality conditions for disjunctive programs with application to mathematical programs with equilibrium constraints.Set-Valued Anal. 15 (2007), 139–162. Zbl 1149.90143, MR 2321948, 10.1007/s11228-006-0033-5
Reference: [13] Outrata, J. V., Kočvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints.Kluwer Academic Publishers, Dordrecht 1998. MR 1641213
Reference: [14] Pang, J.-S., Fukushima, M.: Complementarity constraint qualifications and simplified B-stationarity conditions for mathematical programs with equilibrium constraints.Comput. Optim. Appl. 13 (1999), 111–136. MR 1704116, 10.1023/A:1008656806889
Reference: [15] Robinson, S. M.: Some continuity properties of polyhedral multifunctions.Math. Program. Studies 14 (1976), 206–214. Zbl 0449.90090, MR 0600130, 10.1007/BFb0120929
Reference: [16] Robinson, S. M.: Strongly regular generalized equations.Math. Oper. Res. 5 (1980), 43–62. Zbl 0437.90094, MR 0561153, 10.1287/moor.5.1.43
Reference: [17] Rockafellar, R. T., Wets, R. J.-B.: Variational Analysis.Springer, Berlin 1998. Zbl 0888.49001, MR 1491362
Reference: [18] Scheel, H., Scholtes, S.: Mathematical programs with complementarity constraints: Stationarity, optimality and sensitivity.Math. Oper. Res. 25 (2000), 1–22. MR 1854317, 10.1287/moor.25.1.1.15213
Reference: [19] Surowiec, T.: Explicit Stationarity Conditions and Solution Characterization for Equilibrium Problems with Equilibrium Constraints.Doctoral Thesis, Humboldt University, Berlin 2009.
.

Files

Files Size Format View
Kybernetika_46-2010-3_8.pdf 489.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo