Previous |  Up |  Next

Article

Title: Interval valued bimatrix games (English)
Author: Hladík, Milan
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 3
Year: 2010
Pages: 435-446
Summary lang: English
.
Category: math
.
Summary: Payoffs in (bimatrix) games are usually not known precisely, but it is often possible to determine lower and upper bounds on payoffs. Such interval valued bimatrix games are considered in this paper. There are many questions arising in this context. First, we discuss the problem of existence of an equilibrium being common for all instances of interval values. We show that this property is equivalent to solvability of a certain linear mixed integer system of equations and inequalities. Second, we characterize the set of all possible equilibria by mean of a linear mixed integer system. (English)
Keyword: bimatrix game
Keyword: interval matrix
Keyword: interval analysis
MSC: 90C11
MSC: 91A05
MSC: 91A15
idZBL: Zbl 1202.91021
idMR: MR2676081
.
Date available: 2010-09-13T16:52:36Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140759
.
Reference: [1] Alparslan-Gök, S. Z., Branzei, R., Tijs, S. H.: Cores and stable sets for interval-valued games.Discussion Paper 2008-17, Tilburg University, Center for Economic Research, 2008.
Reference: [2] Alparslan-Gök, S. Z., Miquel, S., Tijs, S. H.: Cooperation under interval uncertainty.Math. Meth. Oper. Res. 69 (2009), 1, 99–109. MR 2476050, 10.1007/s00186-008-0211-3
Reference: [3] Audet, C., Belhaiza, S., Hansen, P.: Enumeration of all the extreme equilibria in game theory: bimatrix and polymatrix games.J. Optim. Theory Appl. 129 (2006), 3, 349–372. Zbl 1122.91009, MR 2281145, 10.1007/s10957-006-9070-3
Reference: [4] Collins, W. D., Hu, C.: Fuzzily determined interval matrix games.In: Proc. BISCSE’05, University of California, Berkeley 2005.
Reference: [5] Collins, W. D., Hu, C.: Interval matrix games.In: Knowledge Processing with Interval and Soft Computing (C. Hu et al., eds.), Chapter 7, Springer, London 2008, pp. 1–19.
Reference: [6] Collins, W. D., Hu, C.: Studying interval valued matrix games with fuzzy logic.Soft Comput. 12 (2008), 2, 147–155. Zbl 1152.91312, 10.1007/s00500-007-0207-6
Reference: [7] Levin, V. I.: Antagonistic games with interval parameters.Cybern. Syst. Anal. 35 (1999), 4, 644–652. Zbl 0964.91005, MR 1729000, 10.1007/BF02835860
Reference: [8] Liu, S.-T., Kao, C.: Matrix games with interval data.Computers & Industrial Engineering 56 (2009), 4, 1697–1700. 10.1016/j.cie.2008.06.002
Reference: [9] Nash, J. F.: Equilibrium points in $n$-person games.Proc. Natl. Acad. Sci. USA 36 (1950), 48–49. Zbl 0036.01104, MR 0031701, 10.1073/pnas.36.1.48
Reference: [10] Rohn, J.: Solvability of systems of interval linear equations and inequalities.In: Linear Optimization Problems with Inexact Data (M. Fiedler et al., eds.), Chapter 2, Springer, New York 2006, pp. .35–77.
Reference: [11] Shashikhin, V.: Antagonistic game with interval payoff functions. Cybern. Syst. Anal. 40 (2004), 4, 556–564. Zbl 1132.91329, MR 2136247, 10.1023/B:CASA.0000047877.10921.d0
Reference: [12] Thomas, L. C.: Games, Theory and Applications.Reprint of the 1986 edition. Dover Publications, Mineola, NY 2003. Zbl 1140.91023, MR 2025526
Reference: [13] Neumann, J. von, Morgenstern, O.: Theory of Games and Economic Behavior.With an Introduction by Harold Kuhn and an Afterword by Ariel Rubinstein. Princeton University Press, Princeton, NJ 2007. MR 2316805
Reference: [14] Stengel, B. von: Computing equilibria for two-person games.In: Handbook of Game Theory with Economic Applications (R. J. Aumann and S. Hart, eds.), Volume 3, Chapter 45, Elsevier, Amsterdam 2002, pp. 1723–1759.
Reference: [15] Yager, R. R., Kreinovich, V.: Fair division under interval uncertainty.Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 8 (2000), 5, 611–618. Zbl 1113.68542, MR 1784650, 10.1142/S0218488500000423
.

Files

Files Size Format View
Kybernetika_46-2010-3_9.pdf 454.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo