Previous |  Up |  Next

Article

Title: On second–order Taylor expansion of critical values (English)
Author: Bütikofer, Stephan
Author: Klatte, Diethard
Author: Kummer, Bernd
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 3
Year: 2010
Pages: 472-487
Summary lang: English
.
Category: math
.
Summary: Studying a critical value function $\varphi$ in parametric nonlinear programming, we recall conditions guaranteeing that $\varphi$ is a $C^{1,1}$ function and derive second order Taylor expansion formulas including second-order terms in the form of certain generalized derivatives of $D \varphi$. Several specializations and applications are discussed. These results are understood as supplements to the well–developed theory of first- and second-order directional differentiability of the optimal value function in parametric optimization. (English)
Keyword: Taylor expansion
Keyword: parametric programs
Keyword: critical value function
Keyword: generalized derivatives
Keyword: envelope theorems
Keyword: Lipschitz stability
Keyword: $C^{1,1}$ optimization
MSC: 49J52
MSC: 49K40
MSC: 65K05
MSC: 65K10
MSC: 90C30
MSC: 90C31
idZBL: Zbl 1197.65062
idMR: MR2676084
.
Date available: 2010-09-13T16:58:25Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140762
.
Reference: [1] Bonnans, J. F., Shapiro, A.: Perturbation Analysis of Optimization Problems.Springer, New York 2000. Zbl 0966.49001, MR 1756264
Reference: [2] Bütikofer, St.: Globalizing a nonsmooth Newton method via nonmonotone path search.Math. Meth. Oper. Res. 68 (2008), 235–256. MR 2443312, 10.1007/s00186-008-0219-8
Reference: [3] Bütikofer, St., Klatte, D.: A nonsmooth Newton method with path search and its use in solving $C^{1,1}$ programs and semi-infinite problems.Manuscript, February 2009.
Reference: [4] Clarke, F. H.: Optimization and Nonsmooth Analysis.Wiley, New York 1983. Zbl 0696.49002, MR 0709590
Reference: [5] Dempe, S.: Foundations of Bilevel Programming.Kluwer, Dordrecht – Boston – London 2002. Zbl 1038.90097, MR 1921449
Reference: [6] Demyanov, V. F., Malozemov, V. N.: Introduction to Minimax.Wiley, New York 1974. MR 0475823
Reference: [7] Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, Volumes I, II.Springer, New York 2003.
Reference: [8] Fiacco, A. V.: Introduction to Sensitivity and Stability Analysis.Academic Press, New York 1983. Zbl 0543.90075, MR 0721641
Reference: [9] Gauvin, J., Dubeau, F.: Differential properties of the marginal function in mathematical programming.Math. Program. Study 19 (1982), 101–119. Zbl 0502.90072, MR 0669727, 10.1007/BFb0120984
Reference: [10] Gauvin, J.: Theory of Nonconvex Programming.Les Publications CRM, Montreal 1994.
Reference: [11] Golstein, E. G.: Theory of Convex Programming.(Trans. Math. Monographs 36.) American Mathematical Society, Providence 1972. MR 0359802
Reference: [12] Hiriart-Urruty, J.-B., Strodiot, J. J., Nguyen, V. Hien: Generalized Hessian matrix and second order optimality conditions for problems with $ {C}^{1,1} $-data.Appl. Math. Optim. 11 (1984), 43–56. MR 0726975, 10.1007/BF01442169
Reference: [13] Jittorntrum, K.: Solution point differentiability without strict complementarity in nonlinear programming.Math. Program. Study 21 (1984), 127–138. Zbl 0571.90080, MR 0751247, 10.1007/BFb0121215
Reference: [14] Jongen, H. Th., Möbert, T., Tammer, K.: On iterated minimization in nonconvex optimization.Math. Oper. Res. 11 (1986), 679–691. MR 0865563, 10.1287/moor.11.4.679
Reference: [15] Klatte, D.: On quantitative stability for non-isolated minima.Control and Cybernetics 23 (1994), 183–200. Zbl 0808.90120, MR 1284514
Reference: [16] Klatte, D., Kummer, B.: Generalized Kojima functions and Lipschitz stability of critical points.Comput. Optim. Appl. 13 (1999), 61–85. Zbl 1017.90104, MR 1704114, 10.1023/A:1008648605071
Reference: [17] Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization – Regularity, Calculus, Methods and Applications.Kluwer, Dordrecht – Boston – London 2002. Zbl 1173.49300, MR 1909427
Reference: [18] Klatte, D., Kummer, B.: Optimization methods and stability of inclusions in Banach spaces.Math. Program. Ser. B 117 (2009), 305–330. Zbl 1158.49007, MR 2421309, 10.1007/s10107-007-0174-9
Reference: [19] Klatte, D., Tammer, K.: Strong stability of stationary solutions and Karush–Kuhn–Tucker points in nonlinear optimization.Ann. Oper. Res. 27 (1990), 285–307. Zbl 0746.90070, MR 1088996, 10.1007/BF02055199
Reference: [20] Kojima, M.: Strongly stable stationary solutions in nonlinear programs.In: Analysis and Computation of Fixed Points (S. M. Robinson, ed.), Academic Press, New York 1980, pp. 93–138. Zbl 0478.90062, MR 0592631
Reference: [21] Kummer, B.: Newton’s method for non-differentiable functions.In: Advances in Math. Optimization (J. Guddat et al., eds.), Akademie Verlag, Berlin 1988, pp. 114–125. Zbl 0662.65050
Reference: [22] Kummer, B.: Lipschitzian inverse functions, directional derivatives and application in $ {C}^{1,1} $ optimization.J. Optim. Theory Appl. 70 (1991), 559–580. MR 1124778, 10.1007/BF00941302
Reference: [23] Kummer, B.: An implicit function theorem for $ {C}^{0,1} $-equations and parametric $ {C}^{1,1} $-optimization.J. Math. Anal. Appl. 158 (1991), 35–46. MR 1113397, 10.1016/0022-247X(91)90264-Z
Reference: [24] Kummer, B.: Newton’s method based on generalized derivatives for nonsmooth functions: convergence analysis.In: Advances in Optimization (W. Oettli and D. Pallaschke, eds.), Springer, Berlin 1992, pp. 171–194. Zbl 0768.49012, MR 1229731
Reference: [25] Kummer, B.: Generalized Newton and NCP-methods: Convergence, regularity, actions.Discuss. Math. – Differential Inclusions 20 (2000), 209–244. Zbl 1016.90058, MR 1815097, 10.7151/dmdico.1013
Reference: [26] Kummer, B.: Inclusions in Banach spaces: Hoelder stability, solution schemes and Ekeland’s principle.J. Math. Anal. Appl. 358 (2009), 327–344. MR 2532510, 10.1016/j.jmaa.2009.04.060
Reference: [27] Minchenko, L. I.: Multivalued analysis and differential properties of multivalued mappings and marginal functions.J. Math. Sci. 116 (2003), 93–138. MR 1995436, 10.1023/A:1023669004408
Reference: [28] Poliquin, R. A., Rockafellar, R. T.: Tilt stability of a local minimum.SIAM J. Optim. 8 (1998), 287-299. Zbl 0918.49016, MR 1618790, 10.1137/S1052623496309296
Reference: [29] Robinson, S. M.: Strongly regular generalized equations.Math. Oper. Res. 5 (1980), 43–62. Zbl 0437.90094, MR 0561153, 10.1287/moor.5.1.43
Reference: [30] Rockafellar, R. T., Wets, R. J.-B.: Variational Analysis.Springer, Berlin 1998. Zbl 0888.49001, MR 1491362
Reference: [31] Scholtes, S.: Introduction to Piecewise Differentiable Equations.Preprint No. 53/1994. Institut für Statistik und Math. Wirtschaftstheorie, Universität Karlsruhe, 1994.
Reference: [32] Stein, O.: Bi-level Strategies in Semi-infinite Programming.Kluwer, Dordrecht – Boston – London 2003. Zbl 1103.90094, MR 2025879
Reference: [33] Sydsaeter, K., Hammond, P., Seierstad, A., Strom, A.: Further Mathematics for Economic Analysis.Prentice Hall, 2005.
Reference: [34] Thibault, L.: Subdifferentials of compactly Lipschitz vector-valued functions.Ann. Mat. Pura Appl. 4 (1980), 157–192. MR 0605208, 10.1007/BF01789411
Reference: [35] Varian, H.: Microeconomic Analysis.Third edition. W. W. Norton, New York 1992.
.

Files

Files Size Format View
Kybernetika_46-2010-3_12.pdf 545.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo