Previous |  Up |  Next

Article

Title: Measuring of second–order stochastic dominance portfolio efficiency (English)
Author: Kopa, Miloš
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 3
Year: 2010
Pages: 488-500
Summary lang: English
.
Category: math
.
Summary: In this paper, we deal with second-order stochastic dominance (SSD) portfolio efficiency with respect to all portfolios that can be created from a considered set of assets. Assuming scenario approach for distribution of returns several SSD portfolio efficiency tests were proposed. We introduce a $\delta$-SSD portfolio efficiency approach and we analyze the stability of SSD portfolio efficiency and $\delta$-SSD portfolio efficiency classification with respect to changes in scenarios of returns. We propose new SSD and $\delta$-SSD portfolio efficiency measures as measures of the stability. We derive a non-linear and mixed-integer non-linear programs for evaluating these measures. Contrary to all existing SSD portfolio inefficiency measures, these new measures allow us to compare any two $\delta$-SSD efficient or SSD efficient portfolios. Finally, using historical US stock market data, we compute $\delta$-SSD and SSD portfolio efficiency measures of several SSD efficient portfolios. (English)
Keyword: stochastic dominance
Keyword: stability
Keyword: SSD portfolio efficiency measure
MSC: 60E15
MSC: 91B28
MSC: 91B30
MSC: 91G10
idZBL: Zbl 1193.91140
idMR: MR2676085
.
Date available: 2010-09-13T17:00:13Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140763
.
Reference: [1] Dentcheva, D., Henrion, R., Ruszczyński, A.: Stability and sensitivity of optimization problems with first order stochastic dominance constraints.SIAM J. Optim. 18 (2007), 322–333. MR 2299687, 10.1137/060650118
Reference: [2] Dentcheva, D., Ruszczyński, A.: Optimization with stochastic dominance constraints.SIAM J. Optim. 14 (2003), 548–566. MR 2048155, 10.1137/S1052623402420528
Reference: [3] Dentcheva, D., Ruszczyński, A.: Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints.Math. Programming 99 (2004), 329–350. MR 2039044, 10.1007/s10107-003-0453-z
Reference: [4] Dentcheva, D., Ruszczyński, A.: Portfolio optimization with stochastic dominance constraints.J. Banking and Finance 30 (2006), 2, 433–451. 10.1016/j.jbankfin.2005.04.024
Reference: [5] Rudolf, G., Ruszczyński, A.: Optimization problems with second order stochastic dominance constraints: duality, compact formulations, and cut generation methods.SIAM J. Optim. 19 (2008), 3, 1326–1343. MR 2460744, 10.1137/070702473
Reference: [6] Hadar, J., Russell, W. R.: Rules for ordering uncertain prospects.Amer. Econom. Rev. 59 (1969), 1, 25–34.
Reference: [7] Hanoch, G., Levy, H.: The efficiency analysis of choices involving risk.Rev. Econom. Stud. 36 (1969), 335–346. Zbl 0184.45202, 10.2307/2296431
Reference: [8] Hardy, G. H., Littlewood, J. E., Polya, G.: Inequalities.Cambridge University Press, Cambridge 1934. Zbl 0634.26008
Reference: [9] Kopa, M., Chovanec, P.: A second-order stochastic dominance portfolio efficiency measure.Kybernetika 44 (2008), 2, 243–258. Zbl 1154.91456, MR 2428222
Reference: [10] Kopa, M., Post, T.: A portfolio optimality test based on the first-order stochastic dominance criterion.J. Financial and Quantitative Analysis 44 (2009), 5, 1103–1124. 10.1017/S0022109009990251
Reference: [11] Kopa, M.: An efficient LP test for SSD portfolio efficiency.Working paper, available at: http://ssrn.com/abstract=1340863.
Reference: [12] Kuosmanen, T.: Efficient diversification according to stochastic dominance criteria.Management Sci. 50 (2004), 10, 1390–1406. 10.1287/mnsc.1040.0284
Reference: [13] Levy, H.: Stochastic Dominance: Investment Decision Making Under Uncertainty.Second edition. Springer Science, New York 2006. Zbl 1109.91037, MR 2239375
Reference: [14] Luedtke, J.: New formulations for optimization under stochastic dominance constraints.SIAM J. Optim. 19 (2008), 3, 1433–1450. Zbl 1180.90215, MR 2466178, 10.1137/070707956
Reference: [15] Ogryczak, W., Ruszczyński, A.: Dual stochastic dominance and related mean-risk models.SIAM J. Optim. 13 (2002), 60–78. MR 1922754, 10.1137/S1052623400375075
Reference: [16] Pflug, G. Ch.: Some remarks on the value-at-risk and the conditional value-at-risk.In: Probabilistic Constrained Optimization: Methodology and Applications (S. Uryasev, ed.), Kluwer Academic Publishers, Norwell MA 2000, pp. 278–287. Zbl 0994.91031, MR 1819417
Reference: [17] Post, T.: Empirical tests for stochastic dominance efficiency.J. Finance 58 (2003), 1905–1932. 10.1111/1540-6261.00592
Reference: [18] Roman, D., Darby-Dowman, K., Mitra, G.: Portfolio construction based on stochastic dominance and target return distributions.Math. Programming, Series B 108 (2006), 541–569. Zbl 1138.91476, MR 2238714, 10.1007/s10107-006-0722-8
Reference: [19] Römisch, W.: Stability of stochastic programming problems.In: Stochastic Programming. Handbooks in Operations Research and Management Science 10 (A. Ruszczyński and A. Shapiro, eds.), Elsevier, Amsterdam 2003, pp. 483–554. MR 2052760
Reference: [20] Rothschild, M., Stiglitz, J. E.: Rules for ordering uncertain prospects.J. Economic Theory 2 (1969), 225–243.
Reference: [21] Ruszczyński, A., Vanderbei, R. J.: Frontiers of stochastically nondominated portfolios.Econometrica 71 (2003), 4, 1287–1297. MR 1995832, 10.1111/1468-0262.t01-1-00448
Reference: [22] Uryasev, S., Rockafellar, R. T.: Conditional value-at-risk for general loss distributions.J. Banking and Finance 26 (2002), 1443–1471. 10.1016/S0378-4266(02)00271-6
Reference: [23] Whitmore, G. A.: Third degree stochastic dominance.Amer. Econom. Rev. 60 (1970), 457–459.
.

Files

Files Size Format View
Kybernetika_46-2010-3_13.pdf 552.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo