[1] Ahmad, N., Kim, H. K., McCann, R. J.: Extremal doubly stochastic measures and optimal transportation. Working paper, 2009.
[2] Alsina, C.:
On Schur-concave $t$-norms and triangle functions. In: General inequalities, 4 (Oberwolfach, 1983), volume 71 of Internat. Schriftenreihe Numer. Math., pp. 241–248. Birkhäuser, Basel 1984.
MR 0821801
[5] Alsina, C., Schweizer, B., Frank, M. J.:
Associative Functions. World Scientific Publishing Company, Singapore 2006.
MR 2222258 |
Zbl 1100.39023
[6] Alvoni, E., Papini, P. L., Spizzichino, F.:
On a class of transformations of copulas and quasi-copulas. Fuzzy Sets and Systems 160 (2009), 334–343.
MR 2473107 |
Zbl 1175.62045
[7] Atanassov, K.:
Intuitionistic Fuzzy Sets, Theory and Applications. Physica-Verlag, Heidelberg 1999.
MR 1718470 |
Zbl 0939.03057
[9] Butnariu, D., Klement, E. P.:
Triangular Norm-Based Measures and Games with Fuzzy Coalitions. Kluwer Academic Publishers, Dordrecht 1993.
Zbl 0804.90145
[10] Couceiro, M.: On two generalizations of associativity. In: Proc. FSTA 2010 (E. P. Klement et al., eds.), p. 47, Liptovský Ján 2010.
[12] Durante, F., Foschi, R., Sarkoci, P.:
Distorted copulas: constructions and tail dependence. Comm. Statist. Theory Methods 2010. In press.
MR 2755652 |
Zbl 1194.62075
[13] Durante, F., Kolesárová, A., Mesiar, R., Sempi, C.:
Copulas with given diagonal sections: Novel constructions and applications. Internat. J. Uncertain. Fuzziness and Knowledge-Based Systems 18 (2007), 397–410.
DOI 10.1142/S0218488507004753 |
MR 2362234 |
Zbl 1158.62324
[14] Durante, F., Mesiar, R., Papini, P. L.:
The lattice-theoretic structure of the sets of triangular norms and semi-copulas. Nonlinear Analysis, Theory, Methods and Applications 69 (2008), 46–52.
MR 2417853 |
Zbl 1204.03051
[15] Durante, F., Mesiar, R., Sempi, C.: Copulas with given diagonal section: some new results. In: Proc. EUSFLAT-LFA Conference (E. Montseny and P. Sobrevilla, eds.), pp. 932–936, Barcelona 2005.
[17] Durante, F., Sempi, C.:
Copulæ, and Schur-concavity. Internat. Math. J. 3 (2003), 893–905.
MR 1990502 |
Zbl 1231.60014
[20] Durante, F., Spizzichino, F.: Semi-copulas, capacities and families of level curves. Fuzzy Sets and Systems 161 (2009), 2009.
[23] Genest, C., Quesada-Molina, J. J., Rodríguez-Lallena, J. A., Sempi, C.:
A characterization of quasi-copulas. J. Multivariate Anal. 69 (1999), 193–205.
DOI 10.1006/jmva.1998.1809 |
MR 1703371
[24] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.:
Aggregation Functions. Cambridge University Press, Cambridge 2009.
MR 2538324 |
Zbl 1196.00002
[25] Gudder, S. P.:
Sharply dominating effect algebras. Tatra Mt. Math. Publ. 15 (1998), 23–30.
MR 1655076 |
Zbl 0939.03073
[34] Jenča, G.: Coexistence in interval effect algebras. Proc. Amer. Math. Soc. To appear.
[36] Jenča, G., Riečanová, Z.: On sharp elements in lattice ordered effect algebras. BUSEFAL 80 (1999), 24–29.
[37] Jwaid, T., Baets, B. De: Double conic copulas. In: Proc. FSTA 2010 (E. P. Klement et al., eds.), p. 73, Liptovský Ján 2010.
[38] Kalina, M.:
On central atoms of Archimedean atomic lattice effect algebras. Kybernetika 46 (2010), 609–620.
MR 2722091 |
Zbl 1214.06002
[39] Klement, E. P., Mesiar, R.:
Open problems posed at the Eight International Conference on Fuzzy Set Theory and Applications (FSTA 2006, Liptovský Ján, Slovakia). Kybernetika 42 (2006), 225–235.
MR 2241786
[40] Klement, E. P., Mesiar, R., Pap, E.:
Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.
MR 1790096 |
Zbl 1010.03046
[41] Klement, E. P., Mesiar, R., Pap, E.:
Uniform approximation of associative copulas by strict and non-strict copulas. Illinois J. Math. 45 (2001), 1393–1400.
MR 1895466 |
Zbl 1054.62064
[42] Klement, E. P., Mesiar, R., Pap, E.:
Problems on triangular norms and related operators. Fuzzy Sets and Systems 145 (2004), 471–479.
MR 2075842 |
Zbl 1050.03019
[44] Kolesárová, A., Mordelová, J., Stupňanová, A.: Aggregation functions as extensions of fuzzy measures. In: Proc. FSTA 2010 (E. P. Klement et al., eds.), p. 80, Liptovský Ján 2010.
[46] Mesiar, R., Novák, V.:
Open problems from the 2nd International Conference on Fuzzy Sets Theory and Its Applications. Fuzzy Sets and Systems 81 (1996), 185–190.
MR 1392780
[47] Mesiarová, A.: Triangular Norms and their Diagonal Functions. Master Thesis, Comenius University, Bratislava 2002.
[48] McNeil, A. J., Nešlehová, J.:
Multivariate Archimedean copulas, $d$-monotone functions and $L_{1}$-norm symmetric distributions. Ann. Statist. 37 (2009), 3059–3097.
DOI 10.1214/07-AOS556 |
MR 2541455
[50] Nelsen, R. B.:
An Introduction to Copulas. Second edition. Springer Science+Business Media, New York 2006.
MR 2197664 |
Zbl 1152.62030
[53] Quesada-Molina, J. J., Rodríguez-Lallena, J.-A.:
Some remarks on the existence of doubly stochastic measures with latticework hairpin support. Aequationes Math. 47 (1994), 164–174.
DOI 10.1007/BF01832957 |
MR 1268029
[54] Riečanová, Z.:
Orthogonal sets in effect algebras. Demonstratio Math. 34 (2001), 525–532.
MR 1853730 |
Zbl 0989.03071
[55] Riečanová, Z.: MacNeille completion of Archimedean lattice effect algebras and their sublattice effect algebras. Preprint.
[57] Royden, H. L.:
Real Analysis. Third edition. Macmillan Publishing Company, New York 1988.
MR 1013117 |
Zbl 0704.26006
[60] Vasiliev, T.: Four extended level operators of membership/non-membership over intuitionistic fuzzy sets. In: Proc. Twelfth International Conference on Intuitionistic Fuzzy Sets, Vol. 2 (J. Kacprzyk and K. Atanassov, eds.), Sofia 2008. Notes on Intuitionistic Fuzzy Sets 14 (2008), 100–107.