Previous |  Up |  Next

Article

Title: Generalized communication conditions and the eigenvalue problem for a monotone and homogenous function (English)
Author: Cavazos-Cadena, Rolando
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 4
Year: 2010
Pages: 665-683
Summary lang: English
.
Category: math
.
Summary: This work is concerned with the eigenvalue problem for a monotone and homogenous self-mapping $f$ of a finite dimensional positive cone. Paralleling the classical analysis of the (linear) Perron–Frobenius theorem, a verifiable communication condition is formulated in terms of the successive compositions of $f$, and under such a condition it is shown that the upper eigenspaces of $f$ are bounded in the projective sense, a property that yields the existence of a nonlinear eigenvalue as well as the projective boundedness of the corresponding eigenspace. The relation of the communication property studied in this note with the idea of indecomposability is briefly discussed. (English)
Keyword: projectively bounded and invariant sets
Keyword: generalized Perron–Frobenius conditions
Keyword: nonlinear eigenvalue
Keyword: Collatz–Wielandt relations
MSC: 47H07
MSC: 47H09
MSC: 47J10
idZBL: Zbl 1208.47059
idMR: MR2722094
.
Date available: 2010-10-22T05:25:38Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140777
.
Reference: [1] Akian, M., Gaubert, S.: Spectral theorem for convex monotone homogeneous maps, and ergodic control.Nonlinear Anal. 52 (2003), 2, 637–679. Zbl 1030.47048, MR 1938367, 10.1016/S0362-546X(02)00170-0
Reference: [2] Akian, M., Gaubert, S., Lemmens, B., Nussbaum, R.: Iteration of order preserving subhomogeneous maps on a cone.Math. Proc. Camb. Phil. Soc. 140 (2006), 157–176. Zbl 1101.37032, MR 2197581, 10.1017/S0305004105008832
Reference: [3] Cavazos–Cadena, R., Hernández–Hernández, D.: Poisson equations associated with a homogeneous and monotone function: necessary and sufficient conditions for a solution in a weakly convex case.Nonlinear Anal.: Theory, Methods and Appl. 72 (2010), 3303–3313. Zbl 1215.47052, MR 2587364
Reference: [4] Dellacherie, C.: Modèles simples de la théorie du potentiel non-linéaire.Lecture Notes in Math. 1426, pp. 52–104, Springer 1990. MR 1071533
Reference: [5] Gaubert, S., Gunawardena, J.: The Perron–Frobenius theorem for homogeneous, monotone functions.Trans. Amer. Math. Soc. 356 (2004), 12, 4931–4950. Zbl 1067.47064, MR 2084406, 10.1090/S0002-9947-04-03470-1
Reference: [6] Gunawardena, J.: From max-plus algebra to nonexpansive maps: a nonlinear theory for discrete event systems.Theoret. Comput. Sci. 293 (2003), 141–167. MR 1957616, 10.1016/S0304-3975(02)00235-9
Reference: [7] Kolokoltsov, V. N.: Nonexpansive maps and option pricing theory.Kybernetika 34 (1998), 713–724. MR 1695373
Reference: [8] Lemmens, B., Scheutzow, M.: On the dynamics of sup-norm nonexpansive maps.Ergodic Theory Dynam. Systems 25 (2005), 3, 861–871. MR 2142949
Reference: [9] Minc, H.: Nonnegative Matrices.Wiley, New York 1988. Zbl 0638.15008, MR 0932967
Reference: [10] Nussbaum, R. D.: Hilbert’s projective metric and iterated nonlinear maps.Memoirs of the AMS 75 (1988), 391. Zbl 0666.47028, MR 0961211, 10.1090/memo/0391
Reference: [11] Nussbaum, R. D.: Iterated nonlinear maps and Hilbert’s projective metric.Memoirs of the AMS 79 (1989), 401. Zbl 0669.47031, MR 0963567, 10.1090/memo/0401
Reference: [12] Seneta, E.: Non-negative Matrices and Markov Chains.Springer, New York 1980. MR 2209438
Reference: [13] Zijm, W. H. M.: Generalized eigenvectors and sets of nonnegative matrices.inear Alg. Appl. 59 (1984), 91–113. Zbl 0548.15015, MR 0743048
.

Files

Files Size Format View
Kybernetika_46-2010-4_6.pdf 312.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo