Previous |  Up |  Next

Article

Title: Bounds of modulus of eigenvalues based on Stein equation (English)
Author: Hu, Guang-Da
Author: Zhu, Qiao
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 4
Year: 2010
Pages: 655-664
Summary lang: English
.
Category: math
.
Summary: This paper is concerned with bounds of eigenvalues of a complex matrix. Both lower and upper bounds of modulus of eigenvalues are given by the Stein equation. Furthermore, two sequences are presented which converge to the minimal and the maximal modulus of eigenvalues, respectively. We have to point out that the two sequences are not recommendable for practical use for finding the minimal and the maximal modulus of eigenvalues. (English)
Keyword: eigenvalues
Keyword: lower and upper bounds
Keyword: Stein equation
MSC: 65F10
MSC: 65F15
idZBL: Zbl 1205.15031
idMR: MR2722093
.
Date available: 2010-10-22T05:24:43Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140776
.
Reference: [1] Bartels, R. H., Stewart, G. W.: Solution of the matrix equation $AX+XB=C$.Comm. ACM 15 (1972), 820–826. 10.1145/361573.361582
Reference: [2] Chen, M. Q., Li, X. Z.: An estimation of the spectral radius of a product of block matrices.Linear Algebra Appl. 379 (2004), 267–275. Zbl 1043.15012, MR 2039742
Reference: [3] Golub, G. H., Loan, C. F. Van: Matrix Computations Third edition.Johns Hopkins University Press, Baltimore 1996. MR 1417720
Reference: [4] Hall, C. A., Porsching, T. A.: Bounds for the maximal eigenvalue of a nonnegative irreducible matrix.Duke Math. J. 36 (1969), 159–164. MR 0240121
Reference: [5] Hu, G. D., Hu, G. D.: A relation between the weighted logarithmic norm of matrix and Lyapunov equation.BIT 40 (2000), 506–510.
Reference: [6] Hu, G. D., Liu, M. Z.: The weighted logarithmic matrix norm and bounds of the matrix exponential.Linear Algebra Appl. 390 (2004), 145–154. Zbl 1060.15024, MR 2083412
Reference: [7] Hu, G. D., Liu, M. Z.: Properties of the weighted logarithmic matrix norms. IMA J. Math. Contr. Inform. 25 (2008), 75–84. Zbl 1144.15018, MR 2410261
Reference: [8] Huang, T. H., Ran, R. S.: A simple estimation for the spectral radius of block H-matrics.J. Comput. Appl. Math. 177 (2005), 455–459. MR 2125329, 10.1016/j.cam.2004.09.059
Reference: [9] Lancaster, P.: The Theory of Matrices with Application.Academic Press, Orlando 1985. MR 0245579
Reference: [10] Lu, L. Z.: Perron complement and Perron root.Linear Algebra Appl. 341 (2002), 239–248. Zbl 0999.15009, MR 1873622, 10.1016/S0024-3795(01)00378-0
Reference: [11] Lu, L. Z., Ng, M. K.: Localization of Perron roots.Linear Algebra its Appl. 392 (2004), 103–107. Zbl 1067.15004, MR 2095910
Reference: [12] Mond, B., Pecaric, J. E.: On an inequality for spectral radius.Linear and Multilinear Algebra 20 (1996), 203–206. Zbl 0866.15011, MR 1382076
Reference: [13] Yang, Z. M.: The block smoothing mehtod for estimationg the spectral radius of a nonnegative matrix.Appl. Math. Comput. 185 (2007), 266–271. MR 2298447, 10.1016/j.amc.2006.06.108
Reference: [14] Zhu, Q., Hu, G. D., Zeng, L.: Estimating the spectral radius of a real matrix by discrete Lyapunov equation.J. Difference Equations Appl. To appear.
.

Files

Files Size Format View
Kybernetika_46-2010-4_5.pdf 223.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo