Previous |  Up |  Next

Article

Title: On computation of C-stationary points for equilibrium problems with linear complementarity constraints via homotopy method (English)
Author: Červinka, Michal
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 4
Year: 2010
Pages: 730-753
Summary lang: English
.
Category: math
.
Summary: In the paper we consider EPCCs with convex quadratic objective functions and one set of complementarity constraints. For this class of problems we propose a possible generalization of the homotopy method for finding stationary points of MPCCs. We analyze the difficulties which arise from this generalization. Numerical results illustrate the performance for randomly generated test problems. (English)
Keyword: equilibrium problems with complementarity constraints
Keyword: homotopy
Keyword: C-stationarity
MSC: 90C20
MSC: 90C31
MSC: 90C33
idZBL: Zbl 1226.90111
idMR: MR2722098
.
Date available: 2010-10-22T05:29:39Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140781
.
Reference: [1] Jongen, H. T., Jonker, P., Twilt, F.: Nonlinear Optimization in Finite Dimensions.Kluwer, Dordrecht 2000. Zbl 0985.90083, MR 1794354
Reference: [2] Leyffer, S., Munson, T.: A globally convergent filter method for MPECs.Preprint ANL/MCS-P1457-0907 (2007).
Reference: [3] Luo, Z.-Q., Pang, J.-S., Ralph, D.: Mathematical Programs with Equilibrium Constraints.Cambridge University Press, Cambridge 1996. Zbl 0870.90092, MR 1419501
Reference: [4] Murty, K. G.: Linear Complementarity, Linear and Nonlinear Programming.Helderman-Verlag 1988. Zbl 0634.90037, MR 0949214
Reference: [5] Ralph, D., Stein, O.: The C-index: a new stability concept for quadratic programs with complementarity constraints, preprint 2010 (a revised version of Homotopy methods for quadratic programs with complementarity constraints.Preprint No. 120, Department of Mathematics - C, RWTH Aachen University 2006). MR 2832404
Reference: [6] Scheel, H., Scholtes, S.: Mathematical programs with complementarity constraints: Stationarity, optimality and sensitivity.Math. Oper. Res. 25 (2000), 1–22. MR 1854317, 10.1287/moor.25.1.1.15213
Reference: [7] Scholtes, S., Stöhr, M.: How stringent is the linear independence assumption for mathematical programs with complementarity constraints? Math.Oper. Res. 26 (2001), 851–863. MR 1870748, 10.1287/moor.26.4.851.10007
Reference: [8] Su, C.-L.: Equilibrium Problems with Equilibrium Constraints: Stationarities, Algorithms and Applications.PhD Thesis, Department of Management Science and Engineering, Stanford University 2005.
.

Files

Files Size Format View
Kybernetika_46-2010-4_10.pdf 347.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo