Previous |  Up |  Next

Article

Title: Optimal sequential procedures with Bayes decision rules (English)
Author: Novikov, Andrey
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 46
Issue: 4
Year: 2010
Pages: 754-770
Summary lang: English
.
Category: math
.
Summary: In this article, a general problem of sequential statistical inference for general discrete-time stochastic processes is considered. The problem is to minimize an average sample number given that Bayesian risk due to incorrect decision does not exceed some given bound. We characterize the form of optimal sequential stopping rules in this problem. In particular, we have a characterization of the form of optimal sequential decision procedures when the Bayesian risk includes both the loss due to incorrect decision and the cost of observations. (English)
Keyword: sequential analysis
Keyword: discrete-time stochastic process
Keyword: dependent observations
Keyword: statistical decision problem
Keyword: Bayes decision
Keyword: randomized stopping time
Keyword: optimal stopping rule
Keyword: existence and uniqueness of optimal sequential decision procedure
MSC: 60G40
MSC: 62C10
MSC: 62L10
MSC: 62L15
idZBL: Zbl 1201.62095
idMR: MR2722099
.
Date available: 2010-10-22T05:30:58Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140782
.
Reference: [1] Berger, J. O.: Statistical Decision Theory and Sequential Analysis.Second edition. Springer-Verlag, New York, Berlin, Heidelberg, Tokyo 1985. MR 0804611
Reference: [2] Berk, R. H.: Locally most powerful sequential tests.Ann. Statist. 3 (1975), 373–381. Zbl 0332.62063, MR 0368346, 10.1214/aos/1176343063
Reference: [3] Castillo, E., García, J.: Necessary conditions for optimal truncated sequential tests.Simple hypotheses (in Spanish). Stochastica 7 (1983), 1, 63–81. MR 0766891
Reference: [4] Chow, Y. S., Robbins, H., Siegmund, D.: Great Expectations: The Theory of Optimal Stopping.Houghton Mifflin Company, Boston 1971. Zbl 0233.60044, MR 0331675
Reference: [5] Cochlar, J.: The optimum sequential test of a finite number of hypotheses for statistically dependent observations.Kybernetika 16 (1980), 36–47. Zbl 0434.62060, MR 0575415
Reference: [6] Cochlar, J., Vrana, I.: On the optimum sequential test of two hypotheses for statistically dependent observations. Kybernetika 14 (1978), 57–69. Zbl 0376.62056, MR 0488544
Reference: [7] DeGroot, M. H.: Optimal Statistical Decisions.McGraw-Hill Book Co., New York, London, Sydney 1970. Zbl 0225.62006, MR 0356303
Reference: [8] Ferguson, T.: Mathematical Statistics: A Decision Theoretic Approach.Probability and Mathematical Statistics, Vol. 1. Academic Press, New York, London 1967. Zbl 0153.47602, MR 0215390
Reference: [9] Ghosh, M., Mukhopadhyay, N., Sen, P. K.: Sequential Estimation.John Wiley & Sons, New York, Chichester, Weinheim, Brisbane, Singapore, Toronto 1997. Zbl 0953.62079, MR 1434065
Reference: [10] Kiefer, J., Weiss, L.: Some properties of generalized sequential probability ratio tests.Ann. Math. Statist. 28 (1957), 57–75. Zbl 0079.35406, MR 0087290, 10.1214/aoms/1177707037
Reference: [11] Lehmann, E. L.: Testing Statistical Hypotheses.John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London 1959. Zbl 0089.14102, MR 0107933
Reference: [12] Lorden, G.: Structure of sequential tests minimizing an expected sample size. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 51 (1980), 291–302. Zbl 0407.62055, MR 0566323
Reference: [13] Müller-Funk, U., Pukelsheim, F., Witting, H.: Locally most powerful tests for two-sided hypotheses. Probability and statistical decision theory, Vol. A (Bad Tatzmannsdorf 1983), pp. 31–56, Reidel, Dordrecht 1985. MR 0851017
Reference: [14] Novikov, A.: Optimal sequential multiple hypothesis testing in presence of control variables.Kybernetika 45 (2009), 3, 507–528. Zbl 1165.62053, MR 2543137
Reference: [15] Novikov, A.: Optimal sequential multiple hypothesis tests.Kybernetika 45 (2009), 2, 309–330. Zbl 1167.62453, MR 2518154
Reference: [16] Novikov, A.: Optimal sequential procedures with Bayes decision rules.Internat. Math. Forum 5 (2010), 43, 2137–2147. Zbl 1201.62095, MR 2685120
Reference: [17] Novikov, A.: Optimal sequential tests for two simple hypotheses.Sequential Analysis 28 (2009), 2, 188–217. Zbl 1162.62080, MR 2518830, 10.1080/07474940902816809
Reference: [18] Novikov, A., Novikov, P.: Locally most powerful sequential tests of a simple hypothesis vs. one-sided alternatives..Journal of Statistical Planning and Inference 140 (2010), 3, 750-765. Zbl 1178.62087, MR 2558402, 10.1016/j.jspi.2009.09.004
Reference: [19] Schmitz, N.: Optimal Sequentially Planned Decision Procedures.Lecture Notes in Statistics 79 (1993), New York: Springer-Verlag. Zbl 0771.62057, MR 1226454, 10.1007/978-1-4612-2736-6_4
Reference: [20] Shiryayev, A. N.: Optimal Stopping Rules.Springer-Verlag, Berlin, Heidelberg, New York 1978. Zbl 0391.60002, MR 0468067
Reference: [21] Wald, A.: Statistical Decision Functions.John Wiley & Sons, Inc., New York, London, Sydney 1971. Zbl 0229.62001, MR 0394957
Reference: [22] Wald, A., Wolfowitz, J.: Optimum character of the sequential probability ratio test. Ann. Math. Statist. 19 (1948), 326–339. Zbl 0032.17302, MR 0026779, 10.1214/aoms/1177730197
Reference: [23] Weiss, L.: On sequential tests which minimize the maximum expected sample size. J. Amer. Statist. Assoc. 57 (1962), 551–566. Zbl 0114.10304, MR 0145630, 10.1080/01621459.1962.10500543
Reference: [24] Zacks, S.: The Theory of Statistical Inference.Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, London, Sydney 1971. MR 0420923
.

Files

Files Size Format View
Kybernetika_46-2010-4_11.pdf 300.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo