Previous |  Up |  Next


abstract integration; extension of integral; Kurzweil-Henstock integration
A general concept of integral is presented in the form given by S. Saks in his famous book Theory of the Integral. A special subclass of integrals is introduced in such a way that the classical integrals (Newton, Riemann, Lebesgue, Perron, Kurzweil-Henstock\dots ) belong to it. \endgraf A general approach to extensions is presented. The Cauchy and Harnack extensions are introduced for general integrals. The general results give, as a specimen, the Kurzweil-Henstock integration in the form of the extension of the Lebesgue integral.
[1] Dunford, N., Schwartz, J. T.: Linear Operators I. Interscience Publishers New York (1958). MR 0117523 | Zbl 0084.10402
[2] Foran, J.: Fundamentals of Real Analysis. Marcel Dekker New York (1991). MR 1201817 | Zbl 0744.26004
[3] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron and Henstock. American Mathematical Society (1994). MR 1288751 | Zbl 0807.26004
[4] Kubota, Y.: Abstract treatment of integration. Math. J. Ibaraki Univ. 29 (1997), 41-54. DOI 10.5036/mjiu.29.41 | MR 1601363 | Zbl 0924.26005
[5] Lee, P.-Y.: Lanzhou Lectures on Henstock Integration. World Scientific Singapore (1989). MR 1050957 | Zbl 0699.26004
[6] Saks, S.: Theory of the Integral. Hafner New York (1937). Zbl 0017.30004
[7] Schwabik, Š.: Variational measures and the Kurzweil-Henstock integral. Math. Slovaca 59 (2009), 731-752. DOI 10.2478/s12175-009-0160-1 | MR 2564330
[8] Thomson, B. S.: Derivates of Interval Functions, Mem. Am. Math. Soc. 452. (1991). MR 1078198
Partner of
EuDML logo