Previous |  Up |  Next

Article

Title: General integration and extensions. I (English)
Author: Schwabik, Štefan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 4
Year: 2010
Pages: 961-981
Summary lang: English
.
Category: math
.
Summary: A general concept of integral is presented in the form given by S. Saks in his famous book Theory of the Integral. A special subclass of integrals is introduced in such a way that the classical integrals (Newton, Riemann, Lebesgue, Perron, Kurzweil-Henstock\dots ) belong to it. \endgraf A general approach to extensions is presented. The Cauchy and Harnack extensions are introduced for general integrals. The general results give, as a specimen, the Kurzweil-Henstock integration in the form of the extension of the Lebesgue integral. (English)
Keyword: abstract integration
Keyword: extension of integral
Keyword: Kurzweil-Henstock integration
MSC: 26A39
MSC: 26A42
idZBL: Zbl 1224.26030
idMR: MR2738960
.
Date available: 2010-11-20T13:54:47Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140797
.
Related article: http://dml.cz/handle/10338.dmlcz/140798
.
Reference: [1] Dunford, N., Schwartz, J. T.: Linear Operators I.Interscience Publishers New York (1958). Zbl 0084.10402, MR 0117523
Reference: [2] Foran, J.: Fundamentals of Real Analysis.Marcel Dekker New York (1991). Zbl 0744.26004, MR 1201817
Reference: [3] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron and Henstock.American Mathematical Society (1994). Zbl 0807.26004, MR 1288751
Reference: [4] Kubota, Y.: Abstract treatment of integration.Math. J. Ibaraki Univ. 29 (1997), 41-54. Zbl 0924.26005, MR 1601363, 10.5036/mjiu.29.41
Reference: [5] Lee, P.-Y.: Lanzhou Lectures on Henstock Integration.World Scientific Singapore (1989). Zbl 0699.26004, MR 1050957
Reference: [6] Saks, S.: Theory of the Integral.Hafner New York (1937). Zbl 0017.30004
Reference: [7] Schwabik, Š.: Variational measures and the Kurzweil-Henstock integral.Math. Slovaca 59 (2009), 731-752. MR 2564330, 10.2478/s12175-009-0160-1
Reference: [8] Thomson, B. S.: Derivates of Interval Functions, Mem. Am. Math. Soc. 452.(1991). MR 1078198
.

Files

Files Size Format View
CzechMathJ_60-2010-4_7.pdf 334.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo