Previous |  Up |  Next

Article

Title: General integration and extensions.II (English)
Author: Schwabik, Štefan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 4
Year: 2010
Pages: 983-1005
Summary lang: English
.
Category: math
.
Summary: This work is a continuation of the paper (Š. Schwabik: General integration and extensions I, Czechoslovak Math.\ J. 60 (2010), 961--981). Two new general extensions are introduced and studied in the class $\frak T$ of general integrals. The new extensions lead to approximate description of the Kurzweil-Henstock integral based on the Lebesgue integral close to the results of S. Nakanishi presented in the paper (S. Nakanishi: A new definition of the Denjoy's special integral by the method of successive approximation, Math.\ Jap. 41 (1995), 217--230). (English)
Keyword: abstract integration
Keyword: extension of integral
Keyword: Kurzweil-Henstock integration
MSC: 26A39
MSC: 26A42
idZBL: Zbl 1224.26031
idMR: MR2738961
.
Date available: 2010-11-20T13:55:25Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140798
.
Related article: http://dml.cz/handle/10338.dmlcz/140797
.
Reference: [1] Bongiorno, B., Piazza, L. Di, Skvortsov, V.: A new full descriptive characterization of Denjoy-Perron integral.Real Anal. Exch. 21 (1995), 656-663. Zbl 0879.26026, MR 1407278, 10.2307/44152676
Reference: [2] Foran, J.: Fundamentals of Real Analysis.Marcel Dekker New York (1991). Zbl 0744.26004, MR 1201817
Reference: [3] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron and Henstock.American Mathematical Society Providence (1994). Zbl 0807.26004, MR 1288751
Reference: [4] Kubota, Y.: Abstract treatment of integration.Math. J. Ibaraki Univ. 29 (1997), 41-54. Zbl 0924.26005, MR 1601363, 10.5036/mjiu.29.41
Reference: [5] Kurzweil, J.: Nichtabsolut konvergente Integrale.BSB B. G. Teubner Verlagsgesellschaft Leipzig (1980). Zbl 0441.28001, MR 0597703
Reference: [6] Lee, P.-Y.: Lanzhou Lectures on Henstock Integration.World Scientific Singapore (1989). Zbl 0699.26004, MR 1050957
Reference: [7] Lee, P.-Y., Výborný, R.: The Integral; An Easy Approach after Kurzweil and Henstock.Cambridge Univ. Press Cambridge (2000). MR 1756319
Reference: [8] Nakanishi, S.: A new definition of the Denjoy's special integral by the method of successive approximation.Math. Jap. 41 (1995), 217-230. Zbl 0932.26007, MR 1317766
Reference: [9] Saks, S.: Theory of the Integral.Hafner New York (1937). Zbl 0017.30004
Reference: [10] Schwabik, Š.: Variational measures and the Kurzweil-Henstock integral.Math. Slovaca 59 (2009), 731-752. MR 2564330, 10.2478/s12175-009-0160-1
Reference: [11] Schwabik, Š.: General integration and extensions I.Czech. Math. J. 60 (2010), 961-981. MR 2738960, 10.1007/s10587-010-0087-2
Reference: [12] Thomson, B. S.: Derivates of Interval Functions.Mem. Am. Math. Soc. 452 (1991). Zbl 0734.26003, MR 1078198
.

Files

Files Size Format View
CzechMathJ_60-2010-4_8.pdf 323.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo