Previous |  Up |  Next

Article

Title: Real hypersurfaces in a complex projective space with pseudo-${\mathbb D}$-parallel structure Jacobi operator (English)
Author: Lee, Hyunjin
Author: Pérez, Juan de Dios
Author: Suh, Young Jin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 4
Year: 2010
Pages: 1025-1036
Summary lang: English
.
Category: math
.
Summary: We introduce the new notion of pseudo-$\mathbb D $-parallel real hypersurfaces in a complex projective space as real hypersurfaces satisfying a condition about the covariant derivative of the structure Jacobi operator in any direction of the maximal holomorphic distribution. This condition generalizes parallelness of the structure Jacobi operator. We classify this type of real hypersurfaces. (English)
Keyword: real hypersurface
Keyword: structure Jacobi operator
MSC: 53B25
MSC: 53C15
idZBL: Zbl 1224.53058
idMR: MR2738963
.
Date available: 2010-11-20T13:56:45Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140800
.
Reference: [1] Blair, D. E.: Riemannian geometry of contact and symplectic manifolds.Progress in Mathematics, Vol 203, Birkhäuser Boston Inc. Boston, Ma (2002). Zbl 1011.53001, MR 1874240
Reference: [2] Cho, J. T., Ki, U-H.: Jacobi operators on real hypersurfaces of a complex projective space.Tsukuba J. Math. 22 (1998), 145-156. Zbl 0983.53034, MR 1637676, 10.21099/tkbjm/1496163476
Reference: [3] Cho, J. T., Ki, U-H.: Real hypersurfaces of a complex projective space in terms of the Jacobi operators.Acta Math. Hungar. 80 (1998), 155-167. MR 1624562, 10.1023/A:1006585128386
Reference: [4] Ki, U-H., Kim, H. J., Lee, A. A.: The Jacobi operator of real hypersurfaces in a complex space form.Commun. Korean Math. Soc. 13 (1998), 545-560. Zbl 0969.53026, MR 1732704
Reference: [5] Kimura, M.: Sectional curvatures of holomorphic planes on a real hypersurface in $P^n(\mathbb C)$.Math. Ann. 276 (1987), 487-497. Zbl 0605.53023, MR 0875342, 10.1007/BF01450843
Reference: [6] Lohnherr, M., Reckziegel, H.: On ruled real hypersurfaces in complex space forms.Geom. Dedicata 74 (1999), 267-286. Zbl 0932.53018, MR 1669351, 10.1023/A:1005000122427
Reference: [7] Niebergall, R., Ryan, P. J.: Real hypersurfaces in complex space forms, in Tight and Taut Submanifolds.MSRI Publications 32 (1997), 233-305. MR 1486875
Reference: [8] Okumura, M.: On some real hypersurfaces of a complex projective space.Trans. A.M.S. 212 (1975), 355-364. Zbl 0288.53043, MR 0377787, 10.1090/S0002-9947-1975-0377787-X
Reference: [9] Ortega, M., Pérez, J. D., Santos, F. G.: Non-existence of real hypersurfaces with parallel structure Jacobi operator in nonflat complex space forms.Rocky Mountain J. Math. 36 (2006), 1603-1613. MR 2285303, 10.1216/rmjm/1181069385
Reference: [10] Pérez, J. D., Santos, F. G., Suh, Y. J.: Real hypersurfaces in complex projective space whose structure Jacobi operator is $\mathbb D$-parallel.Bull. Belg. Math. Soc. Simon Stevin 13 (2006), 459-469. MR 2307681, 10.36045/bbms/1161350687
Reference: [11] Takagi, R.: On homogeneous real hypersurfaces in a complex projective space.Osaka J. Math. 10 (1973), 495-506. Zbl 0274.53062, MR 0336660
Reference: [12] Takagi, R.: Real hypersurfaces in complex projective space with constant principal curvatures.J. Math. Soc. Japan 27 (1975), 43-53. MR 0355906, 10.2969/jmsj/02710043
Reference: [13] Takagi, R.: Real hypersurfaces in complex projective space with constant principal curvatures II.J. Math. Soc. Japan 27 (1975), 507-516. MR 0400120, 10.2969/jmsj/02740507
.

Files

Files Size Format View
CzechMathJ_60-2010-4_10.pdf 258.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo