Previous |  Up |  Next

Article

Title: A remark on the range of elementary operators (English)
Author: Bouali, Said
Author: Bouhafsi, Youssef
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 4
Year: 2010
Pages: 1065-1074
Summary lang: English
.
Category: math
.
Summary: Let $L(H)$ denote the algebra of all bounded linear operators on a separable infinite dimensional complex Hilbert space $H$ into itself. Given $A\in L(H)$, we define the elementary operator $\Delta _A\colon L(H)\longrightarrow L(H)$ by $\Delta _A(X)=AXA-X$. In this paper we study the class of operators $A\in L(H)$ which have the following property: $ATA=T$ implies $AT^{\ast }A=T^{\ast }$ for all trace class operators $T\in C_1(H)$. Such operators are termed generalized quasi-adjoints. The main result is the equivalence between this character and the fact that the ultraweak closure of the range of $\Delta _A$ is closed under taking adjoints. We give a characterization and some basic results concerning generalized quasi-adjoints operators. (English)
Keyword: elementary operators
Keyword: ultraweak closure
Keyword: weak closure
Keyword: quasi-adjoint operator
MSC: 47A30
MSC: 47B10
MSC: 47B20
MSC: 47B47
idZBL: Zbl 1220.47049
idMR: MR2738968
.
Date available: 2010-11-20T13:59:13Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140805
.
Reference: [1] Anderson, J. H., Bunce, J. W., Deddens, J. A., Williams, J. P.: $C^{\ast}$-algebras and derivation ranges.Acta. Sci. Math. (Szeged) 40 (1978), 211-227. Zbl 0406.46048, MR 0515202
Reference: [2] Apostol, C., Fialkow, L.: Structural properties of elementary operators.Canad. J. Math. 38 (1986), 1485-1524. Zbl 0627.47015, MR 0873420, 10.4153/CJM-1986-072-6
Reference: [3] Berens, H., Finzel, M.: A problem in linear matrix approximation.Math. Nachr. 175 (1995), 33-46. Zbl 0838.47015, MR 1355011, 10.1002/mana.19951750104
Reference: [4] Bouali, S., Bouhafsi, Y.: On the range of the elementary operator $X\mapsto AXA-X$.Math. Proc. Roy. Irish Acad. 108 (2008), 1-6. Zbl 1189.47033, MR 2372836
Reference: [5] Dixmier, J.: Les $C^{\ast}$-algèbres et leurs représentations.Gauthier Villars, Paris (1964). Zbl 0152.32902, MR 0171173
Reference: [6] Douglas, R. G.: On the operator equation $S^{\ast}XT=X$ and related topics.Acta. Sci. Math. (Szeged) 30 (1969), 19-32. Zbl 0177.19204, MR 0250106
Reference: [7] Duggal, B. P.: On intertwining operators.Monatsh. Math. 106 (1988), 139-148. Zbl 0652.47019, MR 0968331, 10.1007/BF01298834
Reference: [8] Duggal, B. P.: A remark on generalised Putnam-Fuglede theorems.Proc. Amer. Math. Soc. 129 (2001), 83-87. Zbl 0958.47015, MR 1784016, 10.1090/S0002-9939-00-05920-7
Reference: [9] Embry, M. R., Rosenblum, M.: Spectra, tensor product, and linear operator equations.Pacific J. Math. 53 (1974), 95-107. MR 0353023, 10.2140/pjm.1974.53.95
Reference: [10] Fialkow, L.: Essential spectra of elementary operators.Trans. Amer. Math. Soc. 267 (1981), 157-174. Zbl 0475.47002, MR 0621980, 10.1090/S0002-9947-1981-0621980-8
Reference: [11] Fialkow, A., Lobel, R.: Elementary mapping into ideals of operators.Illinois J. Math. 28 (1984), 555-578. MR 0761990, 10.1215/ijm/1256045966
Reference: [12] Fialkow, L.: Elementary operators and applications.(Editor: Matin Mathieu), Procceding of the International Workshop, World Scientific (1992), 55-113. MR 1183937
Reference: [13] Fong, C. K., Sourour, A. R.: On the operator identity $\sum A_kXB_k=0$.Canad. J. Math. 31 (1979), 845-857. Zbl 0368.47024, MR 0540912, 10.4153/CJM-1979-080-x
Reference: [14] Genkai, Z.: On the operators $X\mapsto AX-XB$ and $ X\mapsto AXB-X$.Chinese J. Fudan Univ. Nat. Sci. 28 (1989), 148-154.
Reference: [15] Magajna, B.: The norm of a symmetric elementary operator.Proc. Amer. Math. Soc. 132 (2004), 1747-1754. Zbl 1055.47030, MR 2051136, 10.1090/S0002-9939-03-07248-4
Reference: [16] Mathieu, M.: Rings of quotients of ultraprime Banach algebras with applications to elementary operators.Proc. Centre Math. Anal., Austral. Nat. Univ. Canberra 21 (1989), 297-317. Zbl 0701.46027, MR 1022011
Reference: [17] Mathieu, M.: The norm problem for elementary operators.Recent progress in functional analysis (Valencia 2000) 363-368 North-Holland Math. Stud. 189, North-Holland, Amsterdam (2001). Zbl 1011.47027, MR 1861772, 10.1016/S0304-0208(01)80061-X
Reference: [18] Stachò, L. L., Zalar, B.: On the norm of Jordan elementary operators in standard operator algebra.Publ. Math. Debrecen 49 (1996), 127-134. MR 1416312
.

Files

Files Size Format View
CzechMathJ_60-2010-4_15.pdf 255.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo