Previous |  Up |  Next

Article

Title: Essential norm of the difference of composition operators on Bloch space (English)
Author: Yang, Ke-Ben
Author: Zhou, Ze-Hua
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 4
Year: 2010
Pages: 1139-1152
Summary lang: English
.
Category: math
.
Summary: Let $\varphi $ and $\psi $ be holomorphic self-maps of the unit disk, and denote by $C_\varphi $, $C_\psi $ the induced composition operators. This paper gives some simple estimates of the essential norm for the difference of composition operators $C_\varphi -C_\psi $ from Bloch spaces to Bloch spaces in the unit disk. Compactness of the difference is also characterized. (English)
Keyword: {\it Bloch} space
Keyword: composition operator
Keyword: essential norm
Keyword: difference
Keyword: compactness
MSC: 32A10
MSC: 32A37
MSC: 32H05
MSC: 47B33
MSC: 47B38
idZBL: Zbl 1220.47045
idMR: MR2738975
.
Date available: 2010-11-20T14:03:18Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/140812
.
Reference: [1] Aron, R., Galindo, P., Lindsröm, M.: Connected components in the space of composition operators on $H^{\infty}$ functions of many variables.Int. Equ. Oper. Theory 45 (2003), 1-14. MR 1952340, 10.1007/BF02789591
Reference: [2] Bonet, J., Lindström, M., Wolf, E.: Differences of composition operators between weighted Banach spaces of holomorphic functions.J. Australian Math. Soc. 84 (2008), 9-20. MR 2469264, 10.1017/S144678870800013X
Reference: [3] Cowen, C. C., MacCluer, B. D.: Composition operators on spaces of analytic functions.CRC Press, Boca Raton (1995). Zbl 0873.47017, MR 1397026
Reference: [4] Cowen, C., Gallardo-Gutiérrez, E.: A new class of operators and a description of adjoints of composition operators.J. Funct. Anal. 238 (2006), 447-462. MR 2253727, 10.1016/j.jfa.2006.04.031
Reference: [5] Fang, Z. S., Zhou, Z. H.: Differences of composition operators on the space of bounded analytic functions in the polydisc.Abstract Appl. Anal. 2008 (2008), 1-10. Zbl 1160.32009, MR 2466222
Reference: [6] Fang, Z. S., Zhou, Z. H.: Differences of composition operators on the Bloch space in the polydisc.Bull. Australian Math. Soc. 79 (2009), 465-471. Zbl 1166.47032, MR 2505351, 10.1017/S0004972709000045
Reference: [7] Gallardo-Gutiérrez, E. A., González, M. J., Nieminen, P. J., Saksman, E.: On the connected component of compact composition operators on the Hardy space.Advances Math. 219 (2008), 986-1001. MR 2442059, 10.1016/j.aim.2008.06.005
Reference: [8] Gorkin, P., Mortini, R., Suarez, D.: Homotopic composition operators on $H^\infty(B^n)$, Function Spaces, Edwardsville, vol. IL, 177-188, 2002. Contemporary Mathematics, vol. 328, Americian Mathematical Society, Providence, RI, 2003.. MR 1990399
Reference: [9] Hosokawa, T., Izuchi, K., Ohno, S.: Topological structure of the space of weighted composition operators on $H^\infty$.Integral Equations Operator Theory 53 (2005), 509-526. MR 2187435, 10.1007/s00020-004-1337-1
Reference: [10] Hosokawa, T., Ohno, S.: Topological structures of the sets of composition operators on the Bloch spaces.J. Math. Anal. Appl. 314 (2006), 736-748. Zbl 1087.47029, MR 2185263, 10.1016/j.jmaa.2005.04.080
Reference: [11] Hosokawa, T., Ohno, S.: Differences of composition operators on the Bloch spaces.J. Operator Theory 57 (2007), 229-242. Zbl 1174.47019, MR 2328996
Reference: [12] Kriete, T., Moorhouse, J.: Linear relations in the Calkin algebra for composition operators.Transactions of the American Mathematical Society 359 (2007), 2915-2944. Zbl 1115.47023, MR 2286063, 10.1090/S0002-9947-07-04166-9
Reference: [13] Lindström, M., Wolf, E.: Essential norm of the difference of weighted composition operators.Monatshefte für Mathematik 153 (2008), 133-143. MR 2373366, 10.1007/s00605-007-0493-1
Reference: [14] MacCluer, B. D.: Components in the space of composition operators.Integral Equations Operator Theory 12 (1989), 725-738. Zbl 0685.47027, MR 1009027, 10.1007/BF01194560
Reference: [15] MacCluer, B., Ohno, S., Zhao, R.: Topological structure of the space of composition operators on $H^\infty$.Int. Eq. Oper. Theory 40 (2001), 481-494. MR 1839472, 10.1007/BF01198142
Reference: [16] María, J., Vukoti'c, D.: Adjoints of composition operators on Hilbert spaces of analytic functions.J. Funct. Anal. 238 (2006), 298-312. MR 2253017, 10.1016/j.jfa.2006.04.024
Reference: [17] Montes-Rodríguez, A.: The essential norm of a composition operator on Bloch spaces.Pacific J. Math. 188 (1999), 339-351. MR 1684196, 10.2140/pjm.1999.188.339
Reference: [18] Moorhouse, J.: Compact differences of composition operators.J. Funct. Anal. 219 (2005), 70-92. Zbl 1087.47032, MR 2108359, 10.1016/j.jfa.2004.01.012
Reference: [19] Nieminen, Pekka J.: Compact differences of composition operators on Bloch and Lipschitz spaces.Comput. Methods Function Theory 7 (2007), 325-344. Zbl 1146.47016, MR 2376675, 10.1007/BF03321648
Reference: [20] Nieminen, P. J., Saksman, E.: On compactness of the difference of composition operators.J. Math. Anal. Appl. 298 (2004), 501-522. Zbl 1072.47021, MR 2086972, 10.1016/j.jmaa.2004.05.024
Reference: [21] Ohno, S., Takagi, H.: Some properties of weighted composition operators on algebras of analytic functions.J. Nonlin. Convex Anal. 2 (2001), 369-380. Zbl 1006.47027, MR 1874125
Reference: [22] Shapiro, J. H.: Composition Operators and Classical Function Theory.Springer Verlag, New York (1993). Zbl 0791.30033, MR 1237406
Reference: [23] Shapiro, J. H., Sundberg, C.: Isolation amongst the composition operators.Pacific J. Math. 145 (1990), 117-152. Zbl 0732.30027, MR 1066401, 10.2140/pjm.1990.145.117
Reference: [24] Toews, C.: Topological components of the set of composition operators on $H^{\infty}(B_N)$.Int. Equ. Oper. Theory 48 (2004), 265-280. MR 2030531, 10.1007/s00020-002-1180-1
Reference: [25] Wolf, E.: Differences of composition operators between weighted Banach spaces of holomorphic functions on the unit polydisk.Results in Mathematics 51 (2008), 361-372. Zbl 1154.47018, MR 2400173, 10.1007/s00025-007-0283-z
Reference: [26] Zhou, Z. H., Chen, R. Y.: On the composition operators on the Bloch space of several complex variables.Science in China (Series A) 48 (2005), 392-399. MR 2156519
Reference: [27] Zhou, Z. H., Chen, R. Y.: Weighted composition operators from $F(p,q,s)$ to Bloch type spaces.Int. J. Math. 19 (2008), 899-926. Zbl 1163.47021, MR 2446507, 10.1142/S0129167X08004984
Reference: [28] Zhou, Z. H., Liu, Y.: The essential norms of composition operators between generalized Bloch spaces in the polydisk and its applications.J. Inequal. Appl. 2006 (2006), 1-22. MR 2270308, 10.1155/JIA/2006/90742
Reference: [29] Zhou, Z. H., Shi, J. H.: Compactness of composition operators on the Bloch space in classical bounded symmetric domains.Michigan Math. J. 50 (2002), 381-405. Zbl 1044.47021, MR 1914071, 10.1307/mmj/1028575740
Reference: [30] Zhou, Z. H., Shi, J. H.: Compact composition operators on the Bloch space in polydiscs.Science in China (Series A) 44 (2001), 286-291. Zbl 1024.47010, MR 1828751, 10.1007/BF02878708
.

Files

Files Size Format View
CzechMathJ_60-2010-4_22.pdf 277.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo