Previous |  Up |  Next

Article

Title: The Grothendieck property for injective tensor products of Banach spaces (English)
Author: Ji, Donghai
Author: Xue, Xiaoping
Author: Bu, Qingying
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 60
Issue: 4
Year: 2010
Pages: 1153-1159
Summary lang: English
.
Category: math
.
Summary: Let $X$ be a Banach space with the Grothendieck property, $Y$ a reflexive Banach space, and let $X\check{\otimes}_{\varepsilon} Y$ be the injective tensor product of $X$ and $Y$. \item {(a)} If either $X^{\ast \ast }$ or $Y$ has the approximation property and each continuous linear operator from $X^\ast $ to $Y$ is compact, then $X\check{\otimes}_{\varepsilon} Y$ has the Grothendieck property. \item {(b)} In addition, if $Y$ has an unconditional finite dimensional decomposition, then $X\check{\otimes}_{\varepsilon} Y$ has the Grothendieck property if and only if each continuous linear operator from $X^\ast $ to $Y$ is compact. (English)
Keyword: Banach space
Keyword: Grothendieck property
Keyword: tensor product
MSC: 46B28
MSC: 46M05
idZBL: Zbl 1224.46034
idMR: MR2738976
.
Date available: 2010-11-20T14:03:51Z
Last updated: 2023-07-17
Stable URL: http://hdl.handle.net/10338.dmlcz/140813
.
Reference: [1] Bu, Q., Emmanuele, G.: The projective and injective tensor products of $L^p[0,1]$ and $X$ being Grothendieck spaces.Rocky Mt. J. Math. 35 (2005), 713-726. MR 2150306, 10.1216/rmjm/1181069704
Reference: [2] Defant, A., Floret, K.: Tensor Norms and Operator Ideals.North-Holland Amsterdam (1993). Zbl 0774.46018, MR 1209438
Reference: [3] Diestel, J., Uhl, J. J.: Vector Measures. Mathematical Surveys No. 15.American Mathematical Society (AMS) Providence (1977). MR 0453964
Reference: [4] Dunford, N., Schwartz, J. T.: Linear Operators. Part I: General Theory.John Wiley & Sons New York (1988). Zbl 0635.47001, MR 1009162
Reference: [5] González, M., Gutiérrez, J. M.: Polynomial Grothendieck properties.Glasg. Math. J. 37 (1995), 211-219. MR 1333740, 10.1017/S0017089500031116
Reference: [6] Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires.Mem. Am. Math. Soc. 16 (1955), French. Zbl 0123.30301, MR 0075539
Reference: [7] Kalton, N. J.: Schauder decompositions and completeness.Bull. Lond. Math. Soc. 2 (1970), 34-36. Zbl 0196.13601, MR 0259547, 10.1112/blms/2.1.34
Reference: [8] Kalton, N. J.: Spaces of compact operators.Math. Ann. 208 (1974), 267-278. Zbl 0266.47038, MR 0341154, 10.1007/BF01432152
Reference: [9] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I. Sequence Spaces.Springer Berlin-Heidelberg-London (1977). Zbl 0362.46013, MR 0500056
Reference: [10] Ryan, R. A.: Introduction to Tensor Products of Banach Spaces.Springer London (2002). Zbl 1090.46001, MR 1888309
.

Files

Files Size Format View
CzechMathJ_60-2010-4_23.pdf 173.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo