Previous |  Up |  Next

Article

Title: Resolvents, integral equations, limit sets (English)
Author: Burton, T. A.
Author: Dwiggins, D. P.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 135
Issue: 4
Year: 2010
Pages: 337-354
Summary lang: English
.
Category: math
.
Summary: In this paper we study a linear integral equation $x(t)=a(t)-\int ^t_0 C(t,s) x(s) {\rm d} s$, its resolvent equation $R(t,s)=C(t,s)-\int ^t_s C(t,u)R(u,s) {\rm d} u$, the variation of parameters formula $x(t)=a(t)-\int ^t_0 R(t,s)a(s) {\rm d} s$, and a perturbed equation. The kernel, $C(t,s)$, satisfies classical smoothness and sign conditions assumed in many real-world problems. We study the effects of perturbations of $C$ and also the limit sets of the resolvent. These results lead us to the study of nonlinear perturbations. (English)
Keyword: integral equation
Keyword: resolvent
MSC: 34D20
idZBL: Zbl 1224.45001
idMR: MR2681008
DOI: 10.21136/MB.2010.140824
.
Date available: 2010-11-24T08:22:18Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140824
.
Reference: [1] Burton, T. A.: Liapunov Functionals for Integral Equations.Trafford, Victoria, B. C., Canada (2008) (www.trafford.com/08-1365).
Reference: [2] Burton, T. A.: Averaged neural networks.Neural Networks 6 (1993), 667-680. 10.1016/S0893-6080(05)80111-X
Reference: [3] Ergen, W. K.: Kinetics of the circulating-fuel nuclear reactor.J. Appl. Phys. 25 (1954), 702-711. Zbl 0055.23003, 10.1063/1.1721720
Reference: [4] Islam, M. N., Neugebauer, J. T.: Qualitative properties of nonlinear Volterra integral equations.Electron. J. Qual. Theory Differ. Equ. 12 (2008), 1-16. Zbl 1178.45009, MR 2385416, 10.14232/ejqtde.2008.1.12
Reference: [5] Levin, J. J.: The asymptotic behavior of the solution of a Volterra equation.Proc. Amer. Math. Soc. 14 (1963), 534-541. Zbl 0115.32403, MR 0152852, 10.1090/S0002-9939-1963-0152852-8
Reference: [6] Miller, Richard K.: Nonlinear Volterra Integral Equations.Benjamin, New York (1971). Zbl 0448.45004, MR 0511193
Reference: [7] Reynolds, David W.: On linear singular Volterra integral equations of the second kind.J. Math. Anal. Appl. 103 (1984), 230-262. Zbl 0557.45003, MR 0757637, 10.1016/0022-247X(84)90171-9
Reference: [8] Strauss, A.: On a perturbed Volterra equation.J. Math. Anal. Appl. 30 (1970), 564-575. MR 0261291, 10.1016/0022-247X(70)90141-1
Reference: [9] Volterra, V.: Sur la théorie mathématique des phénomès héréditaires.J. Math. Pur. Appl. 7 (1928), 249-298.
.

Files

Files Size Format View
MathBohem_135-2010-4_1.pdf 276.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo