Title:
|
Operators approximating partial derivatives at vertices of triangulations by averaging (English) |
Author:
|
Dalík, Josef |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
135 |
Issue:
|
4 |
Year:
|
2010 |
Pages:
|
363-372 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $\mathcal T_h$ be a triangulation of a bounded polygonal domain $\Omega \subset \Re ^2$, $\mathcal L_h$ the space of the functions from $C(\overline \Omega )$ linear on the triangles from $\mathcal T_h$ and $\Pi _h$ the interpolation operator from $C(\overline \Omega )$ to $\mathcal L_h$. For a unit vector $z$ and an inner vertex $a$ of $\mathcal T_h$, we describe the set of vectors of coefficients such that the related linear combinations of the constant derivatives $\partial \Pi _h(u)/\partial z$ on the triangles surrounding $a$ are equal to $\partial u/\partial z(a)$ for all polynomials $u$ of the total degree less than or equal to two. Then we prove that, generally, the values of the so-called recovery operators approximating the gradient $\nabla u(a)$ cannot be expressed as linear combinations of the constant gradients $\nabla \Pi _h(u)$ on the triangles surrounding $a$. (English) |
Keyword:
|
partial derivative |
Keyword:
|
high-order approximation |
Keyword:
|
recovery operator |
MSC:
|
65D25 |
idZBL:
|
Zbl 1224.65057 |
idMR:
|
MR2681010 |
DOI:
|
10.21136/MB.2010.140827 |
. |
Date available:
|
2010-11-24T08:24:05Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140827 |
. |
Reference:
|
[1] Ainsworth, M., Craig, A.: A posteriori error estimators in the finite element method.Numer. Math. 60 429-463 (1992). Zbl 0757.65109, MR 1142306, 10.1007/BF01385730 |
Reference:
|
[2] Ainsworth, M., Oden, J.: A Posteriori Error Estimation in Finite Element Analysis.Wiley, New York (2000). Zbl 1008.65076, MR 1885308 |
Reference:
|
[3] Dalík, J.: Local quadratic interpolation in vertices of regular triangulations.East J. Approx. 14 81-102 (2008). Zbl 1217.41005, MR 2391625 |
Reference:
|
[4] Dalík, J.: Averaging of directional derivatives in vertices of nonobtuse regular triangulations.Submitted for publication to Numer. Math. |
Reference:
|
[5] Hlaváček, I., Křížek, M., Pištora, V.: How to recover the gradient of linear elements on nonuniform triangulations.Appl. Math. 41 241-267 (1996). MR 1395685 |
Reference:
|
[6] Vacek, J.: Dual variational principles for an elliptic partial differential equation.Appl. Math. 21 5-27 (1976). Zbl 0345.35035, MR 0412594 |
Reference:
|
[7] Zhang, Z., Naga, A.: A new finite element gradient recovery method: Superconvergence property.SIAM J. Sci. Comp. 26 1192-1213 (2005). Zbl 1078.65110, MR 2143481, 10.1137/S1064827503402837 |
Reference:
|
[8] Zienkiewicz, O. C., Cheung, Y. K.: The Finite Element Method in Structural and Continuum Mechanics.McGraw Hill, London (1967). Zbl 0189.24902 |
Reference:
|
[9] Zienkiewicz, O. C., Zhu, J. Z.: The superconvergent patch recovery and a posteriori error estimates.Part 1: The recovery technique. Internat. J. Numer. Methods Engrg. 33 1331-1364 (1992). Zbl 0769.73085, MR 1161557, 10.1002/nme.1620330702 |
. |