Previous |  Up |  Next

Article

Title: Homogenization with uncertain input parameters (English)
Author: Nechvátal, Luděk
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 135
Issue: 4
Year: 2010
Pages: 393-402
Summary lang: English
.
Category: math
.
Summary: We homogenize a class of nonlinear differential equations set in highly heterogeneous media. Contrary to the usual approach, the coefficients in the equation characterizing the material properties are supposed to be uncertain functions from a given set of admissible data. The problem with uncertainties is treated by means of the worst scenario method, when we look for a solution which is critical in some sense. (English)
Keyword: homogenization
Keyword: uncertain input data
Keyword: worst scenario
MSC: 35B27
MSC: 35B30
MSC: 35B40
MSC: 35J25
MSC: 35R05
MSC: 49J20
idZBL: Zbl 1224.35023
idMR: MR2681013
DOI: 10.21136/MB.2010.140830
.
Date available: 2010-11-24T08:26:56Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140830
.
Reference: [1] Allaire, G.: Homogenization and two-scale convergence.SIAM J. Math. Anal. 23 (1992), 1482-1518. Zbl 0770.35005, MR 1185639, 10.1137/0523084
Reference: [2] Arbogast, T., Douglas, J., Hornung, U.: Derivation of the double porosity model of single phase flow via homogenization theory.SIAM J. Math. Anal. 21 (1990), 823-836. Zbl 0698.76106, MR 1052874, 10.1137/0521046
Reference: [3] Bensoussan, A., Lions, J. L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures.North Holland, Amsterdam (1978). Zbl 0404.35001, MR 0503330
Reference: [4] Cioranescu, D., Damlamian, A., Griso, G.: The periodic unfolding method in homogenization.SIAM J. Math. Anal. 40 (2008), 1585-1620. Zbl 1167.49013, MR 2466168, 10.1137/080713148
Reference: [5] Piat, V. Chiadò, Defranceschi, A.: Homogenization of monotone operators.Nonlin. Anal. 14 (1990), 717-732. MR 1049117, 10.1016/0362-546X(90)90102-M
Reference: [6] Giorgi, E. De, Spagnolo, S.: Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine.Boll. Unione Mat. Ital., IV. Ser. 8 (1973), 391-411 Italian. Zbl 0274.35002, MR 0348255
Reference: [7] Hlaváček, I., Chleboun, J., Babuška, I.: Uncertain Input Data Problems and the Worst Scenario Method.Elsevier, Amsterdam (2004). Zbl 1116.74003, MR 2285091
Reference: [8] Lukkassen, D., Meidell, A., Wall, P.: Multiscale homogenization of monotone operators.Discrete Contin. Dyn. Syst. 22 (2008), 711-727. Zbl 1156.35314, MR 2429861, 10.3934/dcds.2008.22.711
Reference: [9] Lukkassen, D., Nguetseng, G., Wall, P.: Two-scale convergence.Int. J. Pure Appl. Math. 2 (2002), 35-86. Zbl 1061.35015, MR 1912819
Reference: [10] Murat, F., Tartar, L.: H-convergence.Topics in Mathematical Modelling of Composite Materials Birkhäuser, Boston (1997), 21-43. Zbl 0920.35019, MR 1493039
Reference: [11] Nechvátal, L.: Alternative approaches to the two-scale convergence.Appl. Math. 49 (2004), 97-110. Zbl 1099.35012, MR 2043076, 10.1023/B:APOM.0000027218.04167.9b
Reference: [12] Nechvátal, L.: Worst scenario method in homogenization.Appl. Math. 51 (2006), 263-294. Zbl 1164.35317, MR 2228666, 10.1007/s10492-006-0015-9
Reference: [13] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization.SIAM J. Math. Anal. 20 (1989), 608-623. Zbl 0688.35007, MR 0990867, 10.1137/0520043
Reference: [14] Zeidler, E.: Nonlinear Functional Analysis and its Applications II/B: Nonlinear Monotone Operators.Springer, New York (1990). Zbl 0684.47029, MR 1033498
.

Files

Files Size Format View
MathBohem_135-2010-4_6.pdf 255.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo