Previous |  Up |  Next


Title: Modification of unfolding approach to two-scale convergence (English)
Author: Franců, Jan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 135
Issue: 4
Year: 2010
Pages: 403-412
Summary lang: English
Category: math
Summary: Two-scale convergence is a powerful mathematical tool in periodic homogenization developed for modelling media with periodic structure. The contribution deals with the classical definition, its problems, the ``dual'' definition based on the so-called periodic unfolding. Since in the case of domains with boundary the unfolding operator introduced by D. Cioranescu, A. Damlamian, G. Griso does not satisfy the crucial integral preserving property, the contribution proposes a modified unfolding operator which satisfies the property and thus simplifies the theory. The properties of two-scale convergence are surveyed. (English)
Keyword: homogenization
Keyword: two-scale convergence
Keyword: periodic unfolding
MSC: 35B27
MSC: 49J45
idZBL: Zbl 1224.35020
idMR: MR2681014
DOI: 10.21136/MB.2010.140831
Date available: 2010-11-24T08:27:42Z
Last updated: 2020-07-29
Stable URL:
Reference: [1] Allaire, G.: Homogenization and two-scale convergence.SIAM J. Math. Anal. 23 (1992), 1482-1518. Zbl 0770.35005, MR 1185639, 10.1137/0523084
Reference: [2] Arbogast, T., Douglas, J., Hornung, U.: Derivation of the double porosity model of single phase flow via homogenization theory.SIAM J. Math. Anal. 21 (1990), 823-836. Zbl 0698.76106, MR 1052874, 10.1137/0521046
Reference: [3] Bensoussan, A., Lions, J. L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures.North-Holland, Amsterdam (1978). Zbl 0404.35001, MR 0503330
Reference: [4] Casado-Díaz, J.: Two-scale convergence for nonlinear Dirichlet problems in perforated domains.Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), 249-276. MR 1750830
Reference: [5] Cioranescu, D., Damlamian, A., Griso, G.: Periodic unfolding and homogenization.C. R. Math. Acad. Sci. Paris 335 (2002), 99-104. Zbl 1001.49016, MR 1921004, 10.1016/S1631-073X(02)02429-9
Reference: [6] Cioranescu, D., Damlamian, A., Griso, G.: The periodic unfolding method in homogenization.SIAM J. Math. Anal. 40 (2008), 1585-1620. Zbl 1167.49013, MR 2466168, 10.1137/080713148
Reference: [7] Damlamian, A.: An elementary introduction to periodic unfolding.Proceedings of the Narvic Conference 2004, GAKUTO Internat. Ser. Math. Sci. Appl. 24, Gakkotosho, Tokyo (2006), 119-136. Zbl 1204.35038, MR 2233174
Reference: [8] Franců, J.: On two-scale convergence.Proceeding of the 6th Mathematical Workshop, Faculty of Civil Engineering, Brno University of Technology, Brno, October 18, 2007, CD, 7 pages.
Reference: [9] Holmbom, A., Silfver, J., Svanstedt, N., Wellander, N.: On two-scale convergence and related sequential compactness topics.Appl. Math. 51 (2006), 247-262. Zbl 1164.40304, MR 2228665, 10.1007/s10492-006-0014-x
Reference: [10] Lukkassen, D., Nguetseng, G., Wall, P.: Two-scale convergence.Int. J. Pure Appl. Math. 2 (2002), 35-86. Zbl 1061.35015, MR 1912819
Reference: [11] Nechvátal, L.: Alternative approach to the two-scale convergence.Appl. Math. (Praha) 49 (2004), 97-110. MR 2043076, 10.1023/B:APOM.0000027218.04167.9b
Reference: [12] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization.SIAM J. Math. Anal. 20 (1989), 608-623. Zbl 0688.35007, MR 0990867, 10.1137/0520043


Files Size Format View
MathBohem_135-2010-4_7.pdf 251.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo