Previous |  Up |  Next

Article

Title: Sharp generalized Trudinger inequalities via truncation for embedding into multiple exponential spaces (English)
Author: Černý, Robert
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 4
Year: 2010
Pages: 577-593
Summary lang: English
.
Category: math
.
Summary: We prove that the generalized Trudinger inequality for Orlicz-Sobolev spaces embedded into multiple exponential spaces implies a version of an inequality due to Brézis and Wainger. (English)
Keyword: Orlicz spaces
Keyword: Sobolev inequalities
MSC: 46E30
MSC: 46E35
idZBL: Zbl 1224.46063
idMR: MR2858262
.
Date available: 2010-11-30T16:19:27Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/140839
.
Reference: [1] Brézis H., Wainger S.: A note on limiting case of Sobolev embeddings and convolution inequalities.Comm. Partial Differential Equations 5 (1980), no. 7, 773–789. MR 0579997, 10.1080/03605308008820154
Reference: [2] Černý R., Mašková S.: A sharp form of an embedding into multiple exponential spaces.Czechoslovak Math. J. 60 (2010), no. 3, 751–782. MR 2672414, 10.1007/s10587-010-0048-9
Reference: [3] Cianchi A.: A sharp embedding theorem for Orlicz-Sobolev spaces.Indiana Univ. Math. J. 45 (1996), 39–65. Zbl 0860.46022, MR 1406683, 10.1512/iumj.1996.45.1958
Reference: [4] Cianchi A.: Optimal Orlicz-Sobolev embeddings.Rev. Mat. Iberoamericana 20 (2004), 427–474. Zbl 1061.46031, MR 2073127, 10.4171/RMI/396
Reference: [5] Edmunds D.E., Gurka P., Opic B.: Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces.Indiana Univ. Math. J. 44 (1995), 19–43. Zbl 0826.47021, MR 1336431, 10.1512/iumj.1995.44.1977
Reference: [6] Edmunds D.E., Gurka P., Opic B.: Double exponential integrability, Bessel potentials and embedding theorems.Studia Math. 115 (1995), 151–181. Zbl 0829.47024, MR 1347439
Reference: [7] Edmunds D.E., Gurka P., Opic B.: Sharpness of embeddings in logarithmic Bessel-potential spaces.Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 995–1009. Zbl 0860.46024, MR 1415818
Reference: [8] Edmunds D.E., Kerman R., Pick L.: Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms.J. Funct. Anal. 170 (2000), no. 2, 307–355. Zbl 0955.46019, MR 1740655, 10.1006/jfan.1999.3508
Reference: [9] Fusco N., Lions P.L., Sbordone C.: Sobolev imbedding theorems in borderline cases.Proc. Amer. Math. Soc. 124 (1996), 561–565. Zbl 0841.46023, MR 1301025, 10.1090/S0002-9939-96-03136-X
Reference: [10] Hajlasz P., Koskela P.: Sobolev met Poincaré.Memoirs of the Amer. Math. Soc 145 (2000), 101pp. Zbl 0954.46022, MR 1683160
Reference: [11] Hansson K.: Imbeddings theorems of Sobolev type in potential theory.Math. Scand. 49 (1979), 77–102. MR 0567435
Reference: [12] Hedberg L.I.: On certain convolution inequalities.Proc. Amer. Math. Soc. 36 (1972), 505–512. Zbl 0283.26003, MR 0312232, 10.1090/S0002-9939-1972-0312232-4
Reference: [13] Hempel J.A., Morris G.R., Trudinger N.S.: On the sharpness of a limiting case of the Sobolev imbedding theorem.Bull. Austral. Math. Soc. 3 (1970), 369–373. Zbl 0205.12801, MR 0280998, 10.1017/S0004972700046074
Reference: [14] Hencl S.: A sharp form of an embedding into exponential and double exponential spaces.J. Funct. Anal. 204 (2003), no. 1, 196–227. Zbl 1034.46031, MR 2004749, 10.1016/S0022-1236(02)00172-6
Reference: [15] Hencl S.: Sharp generalized Trudinger inequalities via truncation.J. Math. Anal. Appl. 326 (2006), no. 1, 336–348. Zbl 1115.46026, MR 2239242, 10.1016/j.jmaa.2005.07.041
Reference: [16] Koskela P., Onninen J.: Sharp inequalities via truncation.J. Math. Anal. Appl. 278 (2003), 324–334. Zbl 1019.26003, MR 1974010, 10.1016/S0022-247X(02)00465-1
Reference: [17] Maz'ya V.: Sobolev Spaces.Springer, Berlin, 1975. Zbl 1152.46002, MR 0817985
Reference: [18] Maz'ya V.: A theorem on multidimensional Schrödinger operator.(Russian), Izv. Akad. Nauk 28 (1964), 1145–1172.
Reference: [19] Malý J., Pick L.: An elementary proof of sharp Sobolev embeddings.Proc. Amer. Math. Soc. 130 (2002), no. 2, 555–563. MR 1862137, 10.1090/S0002-9939-01-06060-9
Reference: [20] O'Neil R.: Convolution operators and $L_{(p,q)}$ spaces.Duke Math. J. 30 (1963), 129–142. Zbl 0178.47701, MR 0146673, 10.1215/S0012-7094-63-03015-1
Reference: [21] Peetre J.: Espaces d'interpolation et théorème de Soboleff.Ann. Inst. Fourier 16 (1966), 279–317. Zbl 0151.17903, MR 0221282, 10.5802/aif.232
Reference: [22] Pohozhaev S.I.: On the imbedding Sobolev theorem for $pl=n$.Doklady Conference, Section Math. Moscow Power Inst. (1965), 158–170.
Reference: [23] Rao M.M., Ren Z.D.: Theory of Orlicz Spaces.Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, New York, 1991. Zbl 0724.46032, MR 1113700
Reference: [24] Strichartz R.S.: A note on Trudinger's extension of Sobolev's inequality.Indiana Univ. Math. J. 21 (1972), 841–842. MR 0293389, 10.1512/iumj.1972.21.21066
Reference: [25] Trudinger N.S.: On imbeddings into Orlicz spaces and some applications.J. Math. Mech. 17 (1967), 473–484. Zbl 0163.36402, MR 0216286
Reference: [26] Yudovič V.I.: Some estimates connected with integral operators and with solutions of elliptic equations.Soviet Math. Doklady 2 (1961), 746–749.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-4_4.pdf 286.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo