Previous |  Up |  Next

Article

Title: A note on formal power series (English)
Author: Gan, Xiao-Xiong
Author: Bugajewski, Dariusz
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 4
Year: 2010
Pages: 595-604
Summary lang: English
.
Category: math
.
Summary: In this note we investigate a relationship between the boundary behavior of power series and the composition of formal power series. In particular, we prove that the composition domain of a formal power series $g$ is convex and balanced which implies that the subset $\overline{\mathbb X}_g $ consisting of formal power series which can be composed by a formal power series $g$ possesses such properties. We also provide a necessary and sufficient condition for the superposition operator $T_g$ to map $\overline{\mathbb X}_g$ into itself or to map ${\mathbb X}_g$ into itself, respectively. (English)
Keyword: composition
Keyword: end behavior of convergence of power series
Keyword: convex and balanced set
Keyword: formal power series
MSC: 13F25
MSC: 40A30
MSC: 52A05
idZBL: Zbl 1224.13025
idMR: MR2858263
.
Date available: 2010-11-30T16:20:42Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/140840
.
Reference: [1] Henrici P.: Applied and Computational Complex Analysis.John Wiley and Sons, New York, 1988. Zbl 1107.30300, MR 0372162
Reference: [2] Remmert R.: Theory of Complex Functions.Fouth corrected printing, Springer, New York, Berlin, Heidelberg, 1998. Zbl 0780.30001, MR 1084167
Reference: [3] Raney G.: Functional composition patterns and power series reversion.Trans. Amer. Math. Soc. 94 (1960), no. 3, 441–451. Zbl 0131.01402, MR 0114765, 10.1090/S0002-9947-1960-0114765-9
Reference: [4] Cheng C.C., McKay J., Towber J., Wang S.S., Wrigh D.: Reversion of formal power series and the extended Raney coefficients.Trans. Amer. Math. Soc. 349 (1997), no. 5, 1769–1782. MR 1390972, 10.1090/S0002-9947-97-01781-9
Reference: [5] Constantine G.M., Savits T.H.: A multivariate Faa Di Bruno formula with applications.Trans. Amer. Math. Soc. 348 (1996), no. 2, 503–520. Zbl 0846.05003, MR 1325915, 10.1090/S0002-9947-96-01501-2
Reference: [6] Li H.: $p$-adic power series which commute under composition.Trans. Amer. Math. Soc. 349 (1997), no. 4, 1437–1446. Zbl 0990.11073, MR 1327259, 10.1090/S0002-9947-97-01514-6
Reference: [7] Chaumat J., Chollet A.M.: On composite formal power series.Trans. Amer. Math. Soc. 353 (2001), no. 4, 1691–1703. Zbl 0965.13015, MR 1806723, 10.1090/S0002-9947-01-02733-7
Reference: [8] Eakin P.M., Harris G.A.: When $\Phi (f)$ convergent implies $f$ is convergent?.Math. Ann. 229 (1977), 201–210. MR 0444651, 10.1007/BF01391465
Reference: [9] Gan X., Knox N.: On composition of formal power series.Int. J. Math. and Math. Sci. 30 (2002), no. 12, 761–770. Zbl 0998.13010, MR 1917671, 10.1155/S0161171202107150
Reference: [10] Neelon T.S.: On solutions of real analytic equations.Proc. Amer. Math. Soc. 125 (1997), no. 9, 2531–2535. Zbl 0890.32004, MR 1396991, 10.1090/S0002-9939-97-03894-X
Reference: [11] Neelon T.S.: On solutions to formal equations.Bull. Belg. Math. Soc. 7 (2000), no. 3, 419–427. Zbl 0982.13011, MR 1788146
Reference: [12] Droste M., Zhang G.: On transformation of formal power series.Inform. and Comp. 184 (2003), no. 2, 369–383. MR 1987985, 10.1016/S0890-5401(03)00066-X
Reference: [13] Pravica D., Spurr M.: Unique summing of formal power series solutions to advanced and delayed differential equations.Discrete Contin. Dyn. Syst. 2005, suppl., 730–737. Zbl 1155.34371, MR 2192733
Reference: [14] Sibuya Y.: Formal power series solutions in a parameter.J. Differential Equations 190 (2003), no. 2, 559–578. Zbl 1029.34079, MR 1970042, 10.1016/S0022-0396(02)00083-9
Reference: [15] Gan X.: A generalized chain rule for formal power series.Commun. Math. Anal. 2 (2007), no. 1, 37–44. Zbl 1166.26304, MR 2332968
Reference: [16] Lang S.: Complex Analysis.Second edition, Graduate Texts in Mathematics, 103, Springer, New York, 1985. Zbl 0933.30001, MR 0788885, 10.1007/978-1-4757-1871-3
Reference: [17] Stromberg K.R.: Introduction to Classical Real Analysis.Wadsworth International, Belmont, Calif., 1981. Zbl 0454.26001, MR 0604364
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-4_5.pdf 237.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo