Previous |  Up |  Next

Article

Title: Steady compressible Navier-Stokes-Fourier system in two space dimensions (English)
Author: Pecharová, Petra
Author: Pokorný, Milan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 4
Year: 2010
Pages: 653-679
Summary lang: English
.
Category: math
.
Summary: We study steady flow of a compressible heat conducting viscous fluid in a bounded two-dimensional domain, described by the Navier-Stokes-Fourier system. We assume that the pressure is given by the constitutive equation $p(\rho, \theta) \sim \rho^\gamma + \rho \theta$, where $\rho$ is the density and $\theta$ is the temperature. For $\gamma > 2$, we prove existence of a weak solution to these equations without any assumption on the smallness of the data. The proof uses special approximation of the original problem, which guarantees the pointwise boundedness of the density. Thus we get a solution with density in $L^\infty (\Omega)$ and temperature and velocity in $W^{1,q} (\Omega)$ for any $q < \infty$. (English)
Keyword: steady compressible Navier--Stokes--Fourier equations
Keyword: slip boundary condition
Keyword: weak solutions
Keyword: large data
MSC: 35Q30
MSC: 76N10
idZBL: Zbl 1224.35323
idMR: MR2858268
.
Date available: 2010-11-30T16:27:33Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/140845
.
Reference: [1] Evans L.C.: Partial Differential Equations.Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, 1998. Zbl 1194.35001, MR 1625845
Reference: [2] Frehse J., Steinhauer M., Weigant W.: The Dirichlet problem for steady viscous compressible flow in $3$-D.preprint, University of Bonn, SFB 611, No. 347 (2007), http://www.iam.uni-bonn.de/sfb611/.
Reference: [3] Frehse J., Steinhauer M., Weigant W.: The Dirichlet problem for viscous compressible isothermal Navier–Stokes equations in two-dimensions.preprint, University of Bonn, SFB 611, No. 337 (2007), http://www.iam.uni-bonn.de/sfb611/. MR 2679367
Reference: [4] Lions P.L.: Mathematical Topics in Fluid Mechanics, Vol. 2: Compressible Models.Oxford Science Publications, Oxford University Press, New York, 1998. Zbl 0908.76004, MR 1637634
Reference: [5] Mucha P.: On the inviscid limit on the Navier–Stokes equations for flows with large flux.Nonlinearity 16 (2003), no. 5, 1715–1732. MR 1999576, 10.1088/0951-7715/16/5/310
Reference: [6] Mucha P.B., Pokorný M.: On a new approach to the issue of existence and regularity for the steady compressible Navier–Stokes equations.Nonlinearity 19 (2006), no. 8, 1747–1768. MR 2250794, 10.1088/0951-7715/19/8/003
Reference: [7] Mucha P.B., Pokorný M.: On the steady compressible Navier–Stokes–Fourier system.Comm. Math. Phys. 288 (2009), no. 1, 349–377. MR 2491627, 10.1007/s00220-009-0772-x
Reference: [8] Mucha P.B., Pokorný M.: Weak solutions to equations of steady compressible heat conducting fluids.Math. Models and Methods in Appl. Sc. 20 (2010) No. 5, 785–813. MR 2652619, 10.1142/S0218202510004441
Reference: [9] Novo S., Novotný A.: On the existence of weak solutions to the steady compressible Navier–Stokes equations when the density is not square integrable.J. Math. Kyoto Univ. 42, no. 3 (2002), 531–550. MR 1967222
Reference: [10] Novotný A., Straškraba I.: Introduction to The Mathematical Theory of Compressible Flow.Oxford Lecture Series in Mathematics and its Applications, 27, Oxford University Press, Oxford, 2004. MR 2084891
Reference: [11] Pecharová P.: Steady compressible Navier–Stokes–Fourier equations in two space dimensions.Master Degree Thesis, MFF UK, Praha, 2009.
Reference: [12] Plotnikov P.I., Sokolowski J.: On compactness, domain dependence and existence of steady state solutions to compressible isothermal Navier–Stokes equations.J. Math. Fluid Mech. 7 (2005), 529–573. Zbl 1090.35140, MR 2189674, 10.1007/s00021-004-0134-6
Reference: [13] Pokorný M., Mucha P.B.: $3$D steady compressible Navier–Stokes equations.Discrete Contin. Dyn. Syst. Ser. S 1 (2008), no. 1, 151–163. MR 2375591
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-4_10.pdf 344.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo