Previous |  Up |  Next


Title: A priori estimates for quasilinear parabolic systems with quadratic nonlinearities in the gradient (English)
Author: Arkhipova, Arina A.
Author: Stará, Jana
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 4
Year: 2010
Pages: 639-652
Summary lang: English
Category: math
Summary: We derive local a priori estimates of the Hölder norm of solutions to quasilinear elliptic systems with quadratic nonlinearities in the gradient. We assume higher integrability of solutions and smallness of its BMO norm but the Hölder norm is estimated in terms of BMO norm of the solution under consideration, only. (English)
Keyword: quasilinear parabolic systems
Keyword: quadratic nonlinearities
Keyword: regularity
Keyword: Morrey
Keyword: VMO spaces
MSC: 35J60
idZBL: Zbl 1224.35113
idMR: MR2858267
Date available: 2010-11-30T16:25:59Z
Last updated: 2013-09-22
Stable URL:
Reference: [1] Arkhipova A.: On the partial regularity up to the boundary of weak solutions to quasilinear parabolic systems with quadratic growth.Zap. Nauchn. Sem. POMI, St-Petersburg 249 (1997), 3–23.
Reference: [2] Arkhipova A.: New a priori estimates for q-nonlinear elliptic systems with strong nonlinearities in the gradient, $1<q<2$.Zap. Nauchn. Sem. POMI, St-Petersburg 310 (2003), 19–48. Zbl 1102.35037, MR 2120183
Reference: [3] Arkhipova A.: Quasireverse Hölder inequalities in parabolic metric and their applications.Amer. Math. Transl. (2) 220 (2007), 1–25. MR 2343604
Reference: [4] Arkhipova A.: New a priori estimates for nondiagonal strongly nonlinear parabolic systems.Banach Center Publ. 81 (2008), 13–30. Zbl 1156.35336, MR 2549320, 10.4064/bc81-0-1
Reference: [5] Arkhipova A.: Quasireverse Hölder inequalities and a priori estimates for quasilinear elliptic systems.Rend. Mat. Accad. Lincei 14 (2003), 91–108. MR 2053660
Reference: [6] Arkhipova A.: Boundary a priori estimates for solutions of nondiagonal elliptic systems with strong nonlinearities.Russian Acad. Izvestia Math. 68 (2004), 243–258. MR 2057998, 10.1070/IM2004v068n02ABEH000473
Reference: [7] Bögelein V.: Partial regularity and singular sets of solutions of higher order parabolic systems.Ann. Mat. Pura Appl. 188 (2009), no. 1, 61–122. MR 2447930, 10.1007/s10231-008-0067-4
Reference: [8] Campanato S.: $L^p$-regularity for weak solutions of parabolic systems.Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1980), 65–85. Zbl 0777.35028, MR 0577326
Reference: [9] Chen Y., Struwe M.: Existence and partial regularity results for the heat flow of harmonic maps.Math. Z. 201 (1989), 83–103. MR 0990191, 10.1007/BF01161997
Reference: [10] Chiarenza P., Frasca M., Longo P.: $W^{2,p}$ estimates for non divergence elliptic equations with discontinuous coefficients.Ricerche Mat. 40 (1991), 149–168. Zbl 0818.35023, MR 1191890
Reference: [11] Daněček J., Viszus E.: $L^{2,\lambda}$-regularity for minima of variational integrals.Boll. Unione Mat. Ital. B 8 (2003), 39–48. MR 1955695
Reference: [12] De Giorgi E.: Frontiere orientate di misura minima.Seminario di Mat. della Scuola Normale Superiore, Pisa, 1960–1961. Zbl 0296.49031
Reference: [13] Duzaar F., Grotowski J.F.: Optimal interior partial regularity for nonlinear elliptic systems: the method of A-harmonic approximations.Manuscripta Math. 103 (2000), 267–298. MR 1802484, 10.1007/s002290070007
Reference: [14] Duzaar F., Mingione G.:: Second order parabolic systems, optimal regularity and singular sets of solutions.Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), 705–751. Zbl 1099.35042, MR 2172857, 10.1016/j.anihpc.2004.10.011
Reference: [15] Giaquinta M., Giusti E.: Nonlinear elliptic systems with quadratic growth.Manuscripta Math. 24 (1978), 323–349. Zbl 0378.35027, MR 0481490, 10.1007/BF01167835
Reference: [16] Giaquinta M., Modica G.: Nonlinear systems of the type of the stationary Navier-Stokes system.J. Reine Angew. Math. 330 (1982), 173–214. MR 0641818
Reference: [17] Giaquinta M., Struwe M.: On the partial regularity of weak solutions of nonlinear parabolic systems.Math. Z. 179 (1982). MR 0652852, 10.1007/BF01215058
Reference: [18] Grotowski G.F.: Boundary regularity results for nonlinear elliptic systems in divergence form.Habilitationsschrift, Math. Institut der Friedrich-Alexander-Univ., Erlangen-Nürenberg, 2000.
Reference: [19] Huang Q.: Estimates on the generalized Morrey spaces $L^{p,\lambda}_\phi$ and BMO for elliptic systems.Indiana Univ. Math. J. 45 (1996), 397–439. Zbl 0863.35023, MR 1414336, 10.1512/iumj.1996.45.1968
Reference: [20] Ivert P.-A., Naumann J.: Higher integrability by reverse Hölder inequality (the parabolic case).Preprint, Dip. Matem., Univ. Catania, 1988.
Reference: [21] John O., Stará J.: On some regularity and nonregularity results for solutions to parabolic systems.Matematiche (Catania) 55 (2000), suppl. 2, 145–163. MR 1899663
Reference: [22] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N.: Linear and Quasilinear Equations of Parabolic Type.Translations of Math. Monographs, 23, American Mathematical Society, Providence, RI, 1968.
Reference: [23] Marino M., Maugeri A.: Partial Hölder continuity of solutions of nonlinear parabolic systems of second order with quadratic growth.Boll. Un. Mat. Ital. B (7) 3 (1989), 397–435, 437–451. Zbl 0687.35024, MR 0998004
Reference: [24] Marino M., Maugeri A.: A remark on the note: Partial Hölder continuity of the spatial derivatives of the solutions to nonlinear parabolic systems with quadratic growth.Rend. Sem. Mat. Univ. Padova 95 (1996), 23–28. Zbl 0990.35062, MR 1405352
Reference: [25] Pošta M.: On partial regularity of solutions to the quasilinear parabolic system up to the boundary.preprint no. MATH-KMA-2007/231,
Reference: [26] Ragusa M.A., Tachikawa A.: Partial regularity of the minimizers of quadratic functionals with VMO coefficients.J. London Math. Soc. 72 (2005), 609–620. Zbl 1161.35347, MR 2190327, 10.1112/S002461070500699X


Files Size Format View
CommentatMathUnivCarolRetro_51-2010-4_9.pdf 273.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo