Previous |  Up |  Next

Article

Title: Closure-preserving covers in function spaces (English)
Author: Sánchez, David Guerrero
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 4
Year: 2010
Pages: 693-703
Summary lang: English
.
Category: math
.
Summary: It is shown that if $C_p(X)$ admits a closure-preserving cover by closed $\sigma$-compact sets then $X$ is finite. If $X$ is compact and $C_p(X)$ has a closure-preserving cover by separable subspaces then $X$ is metrizable. We also prove that if $C_p(X,[0,1])$ has a closure-preserving cover by compact sets, then $X$ is discrete. (English)
Keyword: closure-preserving covers
Keyword: function spaces
Keyword: compact spaces
Keyword: pointwise convergence topology
Keyword: topological game
Keyword: winning strategy
MSC: 54C35
idZBL: Zbl 1224.54045
idMR: MR2858270
.
Date available: 2010-11-30T16:29:32Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/140847
.
Reference: [1] Arkhangelskii A.V.: Topological function spaces.Mathematics and its Applications (Soviet Series), 78, Kluwer Academic Publishers Group, Dordrecht, 1992. MR 1144519
Reference: [2] Junnila H.J.K.: Metacompactness, paracompactness, and interior-preserving open covers.Trans. Amer. Math. Soc. 249 (1979), no. 2, 373–385. Zbl 0404.54017, MR 0525679, 10.1090/S0002-9947-1979-0525679-9
Reference: [3] Engelking R.: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [4] Potoczny H.B.: Closure-preserving families of compact sets.General Topology and Appl. 3 (1973), 243–248. Zbl 0263.54010, MR 0322805, 10.1016/0016-660X(72)90015-3
Reference: [5] Potoczny H.B., Junnila H.J.K.: Closure-preserving families and metacompactness.Proc. Amer. Math. Soc. 53 (1975), no. 2, 523–529. Zbl 0318.54018, MR 0388337, 10.1090/S0002-9939-1975-0388337-1
Reference: [6] Rogers C.A., Jayne J.E., $K$-analytic Sets, Rogers C.A., Jayne J.E.: et al..“Analytic Sets", Academic Press, London, 1980, pp. 2–181.
Reference: [7] Shakmatov D.B., Tkachuk V.V.: When is the space $C_p(X)$ $\sigma$-countably compact?.Vestnik Moskov. Univ. Mat. 41 (1986), no. 1, 73–75.
Reference: [8] Telgársky R.: Spaces defined by topological games.Fund. Math. 88 (1975), no. 3, 193–223. MR 0380708
Reference: [9] Tkachuk V.V.: The spaces $C_p(X)$: decomposition into a countable union of bounded subspaces and completeness properties.Topology Appl. 22 (1986), no. 3, 241–253. MR 0842658, 10.1016/0166-8641(86)90023-4
Reference: [10] Tkachuk V.V.: The decomposition of $ C_p(X)$ into a countable union of subspaces with “good” properties implies “good” properties of $ C_p(X)$.Trans. Moscow Math. Soc. 55 (1994), 239–248. MR 1468461
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-4_12.pdf 255.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo