Title:
|
Functional separability (English) |
Author:
|
Levy, R. |
Author:
|
Matveev, M. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
51 |
Issue:
|
4 |
Year:
|
2010 |
Pages:
|
705-711 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A space $X$ is functionally countable (FC) if for every continuous $f:X\to \mathbb R$, $|f(X)|\leq \omega$. The class of FC spaces includes ordinals, some trees, compact scattered spaces, Lindelöf P-spaces, $\sigma$-products in $2^\kappa$, and some L-spaces. We consider the following three versions of functional separability: $X$ is 1-FS if it has a dense FC subspace; $X$ is 2-FS if there is a dense subspace $Y\subset X$ such that for every continuous $f:X\to \mathbb R$, $|f(Y)|\leq\omega$; $X$ is 3-FS if for every continuous $f:X\to \mathbb R$, there is a dense subspace $Y\subset X$ such that $|f(Y)|\leq \omega$. We give examples distinguishing 1-FS, 2-FS, and 3-FS and discuss some properties of functionally separable spaces. (English) |
Keyword:
|
functionally countable |
Keyword:
|
pseudo-$\aleph_1$-compact |
Keyword:
|
DCCC |
Keyword:
|
P-space |
Keyword:
|
$\tau$-simple |
Keyword:
|
scattered |
Keyword:
|
1-functionally separable |
Keyword:
|
2-functionally separable |
Keyword:
|
3-functionally separable |
Keyword:
|
pseudocompact |
Keyword:
|
dyadic compactum |
Keyword:
|
$\sigma$-centered base |
Keyword:
|
LOTS |
MSC:
|
54C30 |
MSC:
|
54D65 |
idZBL:
|
Zbl 1224.54063 |
idMR:
|
MR2858271 |
. |
Date available:
|
2010-11-30T16:32:35Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/140848 |
. |
Reference:
|
[1] Arhangel'skii A.V.: Topological properties of function spaces: duality theorems.Soviet Math. Doc. 269 (1982), 1289–1292. MR 0705371 |
Reference:
|
[2] Arhangel'skii A.V.: Topological Function Spaces.Kluwer Academic Publishers, 1992. MR 1485266 |
Reference:
|
[3] Barr M., Kennison F., Raphael R.: Searching for absolute $\mathcal CR$-epic spaces.Canad. J. Math. 59 (2007), 465–487. MR 2319155, 10.4153/CJM-2007-020-9 |
Reference:
|
[4] Barr M., Burgess W.D., Raphael R.: Ring epimorphisms and $C(X)$.Theory Appl. Categ. 11 (2003), no. 12, 283–308. Zbl 1042.54007, MR 1988400 |
Reference:
|
[5] Burgess W.D., Raphael R.: Compactifications, $C(X)$ and ring epimorphisms.Theory Appl. Categ. 16 (2006), no. 21, 558–584. Zbl 1115.18001, MR 2259263 |
Reference:
|
[6] van Douwen E.K.: Density of compactifications.Set-theoretic Topology, Academic Press, New York, 1977, pp. 97-110. Zbl 0379.54006, MR 0442887 |
Reference:
|
[7] Galvin F.: Problem 6444.Amer. Math. Monthly 90 (1983), no. 9, 648; solution: Amer. Math. Monthly 92 (1985), no. 6, 434. |
Reference:
|
[8] Hrušák M., Raphael R., Woods R.G.: On a class of pseudocompact spaces derived from ring epimorphisms.Topology Appl. 153 (2005), 541–556. MR 2193326 |
Reference:
|
[9] Levy R., Rice M.D.: Normal $P$ spaces and the $G_\delta$-topology.Colloq. Math. 44 (1981), 227–240. Zbl 0496.54034, MR 0652582 |
Reference:
|
[10] Matveev M.: One more topological equivalent of CH.Topology Appl. 157 (2010), 1211–1214. Zbl 1190.54003, MR 2607088, 10.1016/j.topol.2010.02.013 |
Reference:
|
[11] Moore J.T.: A solution to the $L$ space problem.J. Amer. Math. Soc. 19 (2006), no. 3, 717–736. Zbl 1107.03056, MR 2220104, 10.1090/S0894-0347-05-00517-5 |
Reference:
|
[12] Moore J.T.: An $L$ space with a $d$-separable square.Topology Appl. 155 (2008), 304–307. Zbl 1146.54015, MR 2380267, 10.1016/j.topol.2007.07.006 |
Reference:
|
[13] Noble N., Ulmer M.: Factorizing functions on cartesian products.Trans. Amer. Math. Soc. 163 (1972), 329–339. MR 0288721, 10.1090/S0002-9947-1972-0288721-2 |
Reference:
|
[14] Pełczyński A., Semadeni Z.: Spaces of continuous functions III. Spaces $C(\Omega)$ for $\Omega$ without perfect subsets.Studia Math. 18 (1959), 211–222. MR 0107806 |
Reference:
|
[15] Raphael M., Woods R.G.: The epimorphic hull of $C(X)$.Topology Appl. 105 (2002), 65–88. Zbl 1069.18001, MR 1761087 |
Reference:
|
[16] Reznichenko E.A.: A pseudocompact space in which only sets of complete cardinality are not closed and not discrete.Moscow Univ. Math. Bull. (1989), no. 6, 69–70. MR 1065983 |
Reference:
|
[17] Rudin W.: Continuous functions on compact spaces without perfect subsets.Proc. Amer. Math. Soc. 8 (1957), 39–42. Zbl 0077.31103, MR 0085475, 10.1090/S0002-9939-1957-0085475-7 |
Reference:
|
[18] Steprans J.: Trees and continuous mappings into the real line.Topology Appl. 12 (1981), no. 2, 181–185. Zbl 0457.54010, MR 0612014, 10.1016/0166-8641(81)90019-5 |
. |