Previous |  Up |  Next

Article

Title: Functional separability (English)
Author: Levy, R.
Author: Matveev, M.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 4
Year: 2010
Pages: 705-711
Summary lang: English
.
Category: math
.
Summary: A space $X$ is functionally countable (FC) if for every continuous $f:X\to \mathbb R$, $|f(X)|\leq \omega$. The class of FC spaces includes ordinals, some trees, compact scattered spaces, Lindelöf P-spaces, $\sigma$-products in $2^\kappa$, and some L-spaces. We consider the following three versions of functional separability: $X$ is 1-FS if it has a dense FC subspace; $X$ is 2-FS if there is a dense subspace $Y\subset X$ such that for every continuous $f:X\to \mathbb R$, $|f(Y)|\leq\omega$; $X$ is 3-FS if for every continuous $f:X\to \mathbb R$, there is a dense subspace $Y\subset X$ such that $|f(Y)|\leq \omega$. We give examples distinguishing 1-FS, 2-FS, and 3-FS and discuss some properties of functionally separable spaces. (English)
Keyword: functionally countable
Keyword: pseudo-$\aleph_1$-compact
Keyword: DCCC
Keyword: P-space
Keyword: $\tau$-simple
Keyword: scattered
Keyword: 1-functionally separable
Keyword: 2-functionally separable
Keyword: 3-functionally separable
Keyword: pseudocompact
Keyword: dyadic compactum
Keyword: $\sigma$-centered base
Keyword: LOTS
MSC: 54C30
MSC: 54D65
idZBL: Zbl 1224.54063
idMR: MR2858271
.
Date available: 2010-11-30T16:32:35Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/140848
.
Reference: [1] Arhangel'skii A.V.: Topological properties of function spaces: duality theorems.Soviet Math. Doc. 269 (1982), 1289–1292. MR 0705371
Reference: [2] Arhangel'skii A.V.: Topological Function Spaces.Kluwer Academic Publishers, 1992. MR 1485266
Reference: [3] Barr M., Kennison F., Raphael R.: Searching for absolute $\mathcal CR$-epic spaces.Canad. J. Math. 59 (2007), 465–487. MR 2319155, 10.4153/CJM-2007-020-9
Reference: [4] Barr M., Burgess W.D., Raphael R.: Ring epimorphisms and $C(X)$.Theory Appl. Categ. 11 (2003), no. 12, 283–308. Zbl 1042.54007, MR 1988400
Reference: [5] Burgess W.D., Raphael R.: Compactifications, $C(X)$ and ring epimorphisms.Theory Appl. Categ. 16 (2006), no. 21, 558–584. Zbl 1115.18001, MR 2259263
Reference: [6] van Douwen E.K.: Density of compactifications.Set-theoretic Topology, Academic Press, New York, 1977, pp. 97-110. Zbl 0379.54006, MR 0442887
Reference: [7] Galvin F.: Problem 6444.Amer. Math. Monthly 90 (1983), no. 9, 648; solution: Amer. Math. Monthly 92 (1985), no. 6, 434.
Reference: [8] Hrušák M., Raphael R., Woods R.G.: On a class of pseudocompact spaces derived from ring epimorphisms.Topology Appl. 153 (2005), 541–556. MR 2193326
Reference: [9] Levy R., Rice M.D.: Normal $P$ spaces and the $G_\delta$-topology.Colloq. Math. 44 (1981), 227–240. Zbl 0496.54034, MR 0652582
Reference: [10] Matveev M.: One more topological equivalent of CH.Topology Appl. 157 (2010), 1211–1214. Zbl 1190.54003, MR 2607088, 10.1016/j.topol.2010.02.013
Reference: [11] Moore J.T.: A solution to the $L$ space problem.J. Amer. Math. Soc. 19 (2006), no. 3, 717–736. Zbl 1107.03056, MR 2220104, 10.1090/S0894-0347-05-00517-5
Reference: [12] Moore J.T.: An $L$ space with a $d$-separable square.Topology Appl. 155 (2008), 304–307. Zbl 1146.54015, MR 2380267, 10.1016/j.topol.2007.07.006
Reference: [13] Noble N., Ulmer M.: Factorizing functions on cartesian products.Trans. Amer. Math. Soc. 163 (1972), 329–339. MR 0288721, 10.1090/S0002-9947-1972-0288721-2
Reference: [14] Pełczyński A., Semadeni Z.: Spaces of continuous functions III. Spaces $C(\Omega)$ for $\Omega$ without perfect subsets.Studia Math. 18 (1959), 211–222. MR 0107806
Reference: [15] Raphael M., Woods R.G.: The epimorphic hull of $C(X)$.Topology Appl. 105 (2002), 65–88. Zbl 1069.18001, MR 1761087
Reference: [16] Reznichenko E.A.: A pseudocompact space in which only sets of complete cardinality are not closed and not discrete.Moscow Univ. Math. Bull. (1989), no. 6, 69–70. MR 1065983
Reference: [17] Rudin W.: Continuous functions on compact spaces without perfect subsets.Proc. Amer. Math. Soc. 8 (1957), 39–42. Zbl 0077.31103, MR 0085475, 10.1090/S0002-9939-1957-0085475-7
Reference: [18] Steprans J.: Trees and continuous mappings into the real line.Topology Appl. 12 (1981), no. 2, 181–185. Zbl 0457.54010, MR 0612014, 10.1016/0166-8641(81)90019-5
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-4_13.pdf 233.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo