Title:
|
Od Fermatových čísel ke geometrii (Czech) |
Title:
|
From the Fermat numbers to geometry (English) |
Author:
|
Křížek, Michal |
Language:
|
Czech |
Journal:
|
Pokroky matematiky, fyziky a astronomie |
ISSN:
|
0032-2423 |
Volume:
|
46 |
Issue:
|
3 |
Year:
|
2001 |
Pages:
|
179-191 |
. |
Category:
|
math |
. |
MSC:
|
11-01 |
MSC:
|
11A51 |
idZBL:
|
Zbl 1053.11002 |
. |
Date available:
|
2010-12-11T18:29:26Z |
Last updated:
|
2012-08-25 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141082 |
. |
Reference:
|
[1] Agarwal, R. C., Burrus, C. S.: Fast convolution using Fermat number transforms with applications to digital filtering.IEEE Trans. Acoust. Speech Signal Processing 22 (1974), 87–97. MR 0398650 |
Reference:
|
[2] Antonjuk, P. N., Stanjukovič, K. P.: The logistic difference equation. Period doublings and Fermat numbers.(Russian). Dokl. Akad. Nauk SSSR 313 (1990), 1289–1292. MR 1080023 |
Reference:
|
[3] Biermann, K.-R.: Thomas Clausen, Mathematiker und Astronom.J. Reine Angew. Math. 216 (1964), 159–198. Zbl 0127.00504, MR 0164862 |
Reference:
|
[4] Chang, C. C.: An ordered minimal perfect hashing scheme based upon Euler’s theorem.Inform. Sci. 32 (1984), 165–172. Zbl 0567.68037, MR 0749147 |
Reference:
|
[5] Cooley, J. W., Tukey, J. W.: An algorithm for the machine calculation of complex Fourier series.Math. Comp. 19 (1965), 297–301. Zbl 0127.09002, MR 0178586 |
Reference:
|
[6] Crandall, R. E., Mayer, E., Papadopoulos, J.: The twenty-fourth Fermat number is composite.Math. Comp., submitted (1999), 1–21. |
Reference:
|
[7] Creutzburg, R., Grundmann, H.-J.: Fast digital convolution via Fermat number transform.(German). Elektron. Informationsverarb. Kybernet. 21 (1985), 35–46. MR 0805051 |
Reference:
|
[8] Feigenbaum, M. J.: Quantitative universality for a class of nonlinear transformations.J. Stat. Phys. 19 (1978), 25–52. Zbl 0509.58037, MR 0501179 |
Reference:
|
[9] Hewgill, D.: A relationship between Pascal’s triangle and Fermat’s numbers.Fibonacci Quart. 15 (1977), 183–184. MR 0437343 |
Reference:
|
[10] Gauss, C. F.: Disquisitiones arithmeticae.(přeloženo z latinského originálu z r. 1801). Springer, Berlin 1986. |
Reference:
|
[11] Jones, R., Pearce, J.: A postmodern view of fractions and the reciprocals of Fermat primes.Math. Mag. 73 (2000), 83–97. MR 1822751 |
Reference:
|
[12] Křížek, M.: O Fermatových číslech.PMFA 40 (1995), 243–253. MR 1386144 |
Reference:
|
[13] Křížek, M., Křížek, P.: Kouzelný dvanáctistěn pětiúhelníkový.Rozhledy mat.-fyz. 74 (1997), 234–238. |
Reference:
|
[14] Křížek, M., Luca, F., Somer, L.: 17 lectures on Fermat numbers: From number theory to geometry.Springer-Verlag, New York 2001. MR 1866957 |
Reference:
|
[15] Landry, F.: Sur la décomposition du nombre ${2^{64}+1}$.C. R. Acad. Sci. Paris 91 (1880), 138. |
Reference:
|
[16] Lucas, E.: Théorèmes d’arithmétique.Atti della Realle Accademia delle Scienze di Torino 13 (1878), 271–284. |
Reference:
|
[17] Pierpont, J.: On an undemostrated theorem of the Disquisitiones Arithmeticæ.Bull. Amer. Math. Soc. 2 (1895/96), 77–83. MR 1557414 |
Reference:
|
[18] Reed, I. S., Truong, T. K., Welch, L. R.: The fast decoding of Reed-Solomon codes using Fermat transforms.IEEE Trans. Inform. Theory 24 (1978), 497–499. Zbl 0385.94016, MR 0504337 |
Reference:
|
[19] Ripley, B. D.: Stochastic simulations.John Wiley & Sons, New York 1987. MR 0875224 |
Reference:
|
[20] Rosen, M.: Abel’s theorem on the lemniscate.Amer. Math. Monthly 88 (1981), 387–395. Zbl 0491.14023, MR 0622954 |
Reference:
|
[21] Schönhage, A., Strassen, V.: Fast multiplication of large numbers.(German). Computing 7 (1971), 281–292. |
Reference:
|
[22] Wantzel, P. L.: Recherches sur les moyens de reconnaître si un Problème de Géométrie peut se résoudre avec la règle at le compas.J. Math. 2 (1837), 366–372. |
Reference:
|
[23]
: .http://www.prothsearch.net/fermat.html |
. |