[1] Bressan, A.: 
Hyperbolic systems of conservation laws. The one dimensional Cauchy problem. Oxford University Press 1998. 
MR 1816648 
[2] Glimm, J.: 
Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 18 (1965), 697–715. 
MR 0194770 | 
Zbl 0141.28902 
[3] Godlewski, E., Raviart, P. A.: 
Hyperbolic Systems of Conservation Laws. Mathematiques & Applications, S. M. A. I., Ellipses, Paris 1991 (in English). 
MR 1304494 | 
Zbl 0768.35059 
[4] Kröner, D.: Numerical Schemes for Conservation Laws. Teubner, Leipzig–Stuttgart 1996.
[5] Kröner, D., Rokyta, M.: 
Convergence of upwind finite volume schemes for scalar conservation laws in two dimensions. SIAM J. Numer. Anal. 31, no. 2 (1994), 324–343. 
MR 1276703 
[6] Kružkov, S. N.: First order quasilinear equations in several independent variables. Math. USSR Sbornik 10, no. 2 (1970), 217–243 (in English).
[7] Lax, P. D.: 
Hyperbolic systems of conservation laws II. Comm. Pure Appl. Math. 10 (1957), 537–566. 
MR 0093653 | 
Zbl 0081.08803 
[8] Málek, J., Nečas, J., Rokyta, M., Růžička, M.: Weak and measure-valued solutions to evolutionary partial differential equations. Chapman & Hall 1996.
[9] Rauch, J.: 
BV estimates fail for most quasilinear hyperbolic systems in dimension greater than one. Comm. Math. Phys. 106 (1986), 481–484. 
MR 0859822 
[10] Rokyta, M.: A suitable replacement of the BV condition for finite volume schemes on unstructured grids. In: Numerical Modelling in Continuum Mechanics, Feistauer, M., Rannacher, R., Kozel, K. (eds.), 267–274, Matfyzpress, Praha 2001.
[11] Serre, D.: 
Systemes de lois de conservation. Diderot Editeur, 1996. 
Zbl 0930.35003 
[12] Sever, M.: 
Uniqueness failure for entropy solutions of hyperbolic systems of conservation laws. Comm. Pure Appl. Math. 42 (1989), 173–183. 
MR 0978703 | 
Zbl 0645.35063 
[13] Smoller, J.: 
Shock Waves and Reaction-Diffusion Equations. Grundlehren der math. Wissenschaften, Bd. 258, Springer-Verlag, Berlin–Heidelberg–New York, 1983 (1st ed.), 1994 (2nd ed.). 
MR 1301779 | 
Zbl 0508.35002