Previous |  Up |  Next

Article

Title: Pružné kyvadlo: od teoretické mechaniky k pokusům a zase zpátky (Czech)
Title: A stretchy pendulum: from theoretical mechanics to experiments and back (English)
Author: Dvořák, Leoš
Language: Czech
Journal: Pokroky matematiky, fyziky a astronomie
ISSN: 0032-2423
Volume: 51
Issue: 4
Year: 2006
Pages: 312-327
.
Category: physics
.
.
Date available: 2010-12-11T21:50:13Z
Last updated: 2012-08-26
Stable URL: http://hdl.handle.net/10338.dmlcz/141331
.
Reference: [1] Havránek, A., Čertík, O.: Pružné kyvadlo.PMFA 51 (2006), 198–216.
Reference: [2] Olsson, M. G.: Why does a mass on a spring sometimes misbehave?.Am. J. Phys 44 (1976), No. 12, 1211–1212.
Reference: [3] Rusbridge, M. G.: Motion of the sprung pendulum.Am. J. Phys. 48 (1980), No. 2, 146–151. MR 0558774
Reference: [4] Breitenberger, E., Mueller, R. D.: The elastic pendulum: A nonlinear paradigm.J. Math. Phys. 22 (1981), No. 6, 1196–1210. Zbl 0464.70025, MR 0621262
Reference: [5] Lai, H. M.: On the recurrence phenomenon of a resonant spring pendulum.Am. J. Phys. 52 (1984), No. 3, 219–223.
Reference: [6] Aničin, B. A., Davidović, D. M., Babović, V. M.: On the linear theory of the elastic pendulum.Eur. J. Phys. 14 (1993), 132–135.
Reference: [7] Davidović, D. M., Aničin, B. A., Babović, V. M.: The libration limits of the elastic pendulum.Am. J. Phys. 64 (1996), No. 3, 338–342.
Reference: [8] Kuznetsov, S. V.: The motion of the elastic pendulum.Regular and Chaotic Dynamics 4 (1999), No. 3, 3–12. Zbl 1137.70358, MR 1777873
Reference: [9] Press, W. H. et. al.: Numerical Recipes in FORTRAN. The Art of Scientific Computing.Cambridge Univ. Press, Cambridge 1992. Zbl 0778.65002, MR 1196230
Reference: [10] Brdička, M., Hladík, A.: Teoretická mechanika.Academia, Praha 1987. MR 0934921
Reference: [11] Abramowitz, M., Stegun, A.: Handbook of Mathematical Functions.Dower Publications, N. Y. 1970.
Reference: [12] Landau, L. D., Lifšic, E. M.: Mechanika.Nauka, Moskva 1973.
Reference: [13] Landau, L. D., Lifšic, E. M.: Úvod do teoretickej fyziky 1.Alfa, Bratislava 1980.
Reference: [14] Hluší, S.: Parametrická resonance aneb Fyzika na houpačce.Diplomová práce. MFF UK, Praha 2000.
Reference: [15] Lynch, P.: Resonant motion of the three-dimensional elastic pendulum.Int. J. Nonlin. Mech. 37 (2002), 345–367.
Reference: [16] Lynch, P.: The swinging spring.Webové stránky dostupné na adrese http://www.maths.tcd.ie/~plynch/SwingingSpring/SS_Home_Page.html [cit. 31. 5. 2006].
Reference: [17] Christensen, J.: An improved calculation of the mass for the resonant spring pendulum.Am. J. Phys. 72 (2004), No. 6, 818–828.
Reference: [18] : Properties of the nonlinear elastic pendulum.Dostupné na webu na adrese http://academic.reed.edu/physics/courses/phys100/Lab%20Manuals/ Nonlinear%20Pendulum/nonlinear.pdf [cit. 31. 5. 2006]. Patří do projektů kurzu General Physics na Reed College — viz http://academic.reed.edu/physics/courses/phys100/fallsemester.html [cit. 31. 5. 2006].
Reference: [19] Tuwankotta, J. M., Quispel, G. R. W.: Geometric numerical integration applied to the elastic pendulum at higher-order resonance.J. Comp. Appl. Math. 154 (2003), 229–242. Zbl 1107.37309, MR 1970537
.

Files

Files Size Format View
PokrokyMFA_51-2006-4_6.pdf 409.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo