Previous |  Up |  Next

Article

Title: On $a$-Kasch spaces (English)
Author: Estaji, Ali Akbar
Author: Henriksen, Melvin
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 46
Issue: 4
Year: 2010
Pages: 251-262
Summary lang: English
.
Category: math
.
Summary: If $X$ is a Tychonoff space, $C(X)$ its ring of real-valued continuous functions. In this paper, we study non-essential ideals in $C(X)$. Let $a$ be a infinite cardinal, then $X$ is called $a$-Kasch (resp. $\bar{a}$-Kasch) space if given any ideal (resp. $z$-ideal) $I$ with $\operatorname{gen}\,(I)<a$ then $I$ is a non-essential ideal. We show that $X$ is an $\aleph _0$-Kasch space if and only if $X$ is an almost $P$-space and $X$ is an $\aleph _1$-Kasch space if and only if $X$ is a pseudocompact and almost $P$-space. Let $C_F(X)$ denote the socle of $C(X)$. For a topological space $X$ with only a finite number of isolated points, we show that $X$ is an $a$-Kasch space if and only if $\frac{C(X)}{C_F(X)}$ is an $a$-Kasch ring. (English)
Keyword: $a$-Kasch space
Keyword: almost $P$-space
Keyword: basically disconnected
Keyword: $C$-embedded
Keyword: essential ideal
Keyword: extremally disconnected
Keyword: fixed ideal
Keyword: free ideal
Keyword: Kasch ring
Keyword: $P$-space
Keyword: pseudocompact space
Keyword: Stone-Čech compactification
Keyword: socle
Keyword: realcompactification
MSC: 13A30
MSC: 16S60
MSC: 46J10
MSC: 54C40
idZBL: Zbl 1240.54064
idMR: MR2754064
.
Date available: 2010-12-14T14:56:55Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141380
.
Reference: [1] Azarpanah, F.: Essential ideals in $C(X)$.Period. Math. Hungar. 3 (12) (1995), 105–112. Zbl 0869.54021, MR 1609417, 10.1007/BF01876485
Reference: [2] Azarpanah, F.: Intersection of essential ideals in $C(X)$.Proc. Amer. Math. Soc. 125 (1997), 2149–2154. Zbl 0867.54023, MR 1422843, 10.1090/S0002-9939-97-04086-0
Reference: [3] Azarpanah, F.: On almost $P$-space.Far East J. Math. Sci. Special volume (2000), 121–132. MR 1761076
Reference: [4] Azarpanah, F., Karamzadeh, O. A. S., Aliabad, A. R.: On $z^{\circ }$-ideals in $C(X)$.Fund. Math. 160 (1999), 15–25. Zbl 0991.54014, MR 1694400
Reference: [5] Dietrich, W. E., Jr., : On the ideal structure of $C(X)$.Trans. Amer. Math. Soc. 152 (1970), 61–77. Zbl 0205.42402, MR 0265941
Reference: [6] Donne, A. Le: On a question concerning countably generated $z$-ideal of $C(X)$.Proc. Amer. Math. Soc. 80 (1980), 505–510. MR 0581015
Reference: [7] Engelking, R.: General topology.mathematical monographs, vol. 60 ed., PWN Polish Scientific publishers, 1977. Zbl 0373.54002, MR 0500780
Reference: [8] Gillman, L., Jerison, M.: Rings of continuous functions.Springer-Verlag, 1979. MR 0407579
Reference: [9] Goodearl, K. R.: Von Neumann regular rings.Pitman, San Francisco, 1979. Zbl 0411.16007, MR 0533669
Reference: [10] Karamzadeh, O. A. S., Rostami, M.: On the intrinsic topology and some related ideals of $C(X)$.Proc. Amer. Math. Soc. 93 (1985), 179–184. Zbl 0524.54013, MR 0766552
Reference: [11] Lam, Tsit-Yuen: Lectures on Modules and Rings.Springer, 1999.
Reference: [12] Levy, R.: Almost $P$-spaces.Can. J. Math. 29 (1977), 284–288. Zbl 0342.54032, MR 0464203
Reference: [13] Marco, G. De: On the countably generated $z$-ideal of $C(X)$.Proc. Amer. Math. Soc. 31 (1972), 574–576. MR 0288563
Reference: [14] Nunzetta, P., Plank, D.: Closed ideal in $C(X)$.Proc. Amer. Math. Soc. 35 (2) (1972), 601–606. MR 0303496
.

Files

Files Size Format View
ArchMathRetro_046-2010-4_3.pdf 518.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo