Previous |  Up |  Next

Article

Title: Fischer decompositions in Euclidean and Hermitean Clifford analysis (English)
Author: Brackx, Fred
Author: de Schepper, Hennie
Author: Souček, Vladimír
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 46
Issue: 5
Year: 2010
Pages: 301-321
Summary lang: English
.
Category: math
.
Summary: Euclidean Clifford analysis is a higher dimensional function theory studying so–called monogenic functions, i.e. null solutions of the rotation invariant, vector valued, first order Dirac operator $\underline{\partial }$. In the more recent branch Hermitean Clifford analysis, this rotational invariance has been broken by introducing a complex structure $J$ on Euclidean space and a corresponding second Dirac operator $\underline{\partial }_J$, leading to the system of equations $\underline{\partial } f = 0 = \underline{\partial }_J f$ expressing so-called Hermitean monogenicity. The invariance of this system is reduced to the unitary group U($n$). In this paper we decompose the spaces of homogeneous monogenic polynomials into U($n$)-irrucibles involving homogeneous Hermitean monogenic polynomials and we carry out a dimensional analysis of those spaces. Meanwhile an overview is given of so-called Fischer decompositions in Euclidean and Hermitean Clifford analysis. (English)
Keyword: Fischer decomposition
Keyword: Clifford analysis
MSC: 30G35
idZBL: Zbl 1249.30135
idMR: MR2753985
.
Date available: 2010-12-14T15:02:24Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141385
.
Reference: [1] Brackx, F., Bureš, J., Schepper, H. De, Eelbode, D., Sommen, F., Souček, V.: Fundaments of Hermitean Clifford analysis – Part I: Complex structure.Compl. Anal. Oper. Theory 1 (3) (2007), 341–365. MR 2336028, 10.1007/s11785-007-0010-5
Reference: [2] Brackx, F., Bureš, J., Schepper, H. De, Eelbode, D., Sommen, F., Souček, V.: Fundaments of Hermitean Clifford analysis – Part II: Splitting of $h$–monogenic equations.Complex Var. Elliptic Equ. 52 (10–11) (2007), 1063–1079. MR 2374972
Reference: [3] Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis.Pitman Publishers, 1982. Zbl 0529.30001, MR 0697564
Reference: [4] Brackx, F., Delanghe, R., Sommen, F.: Differential forms and$/$or multi–vector functions.Cubo 7 (2) (2005), 139–169. Zbl 1105.58002, MR 2186030
Reference: [5] Brackx, F., Knock, B. De, Schepper, H. De: A matrix Hilbert transform in Hermitean Clifford analysis.J. Math. Anal. Appl. 344 (2) (2008), 1068–1078. Zbl 1148.44004, MR 2426334, 10.1016/j.jmaa.2008.03.043
Reference: [6] Brackx, F., Knock, B. De, Schepper, H. De, Sommen, F.: On Cauchy and Martinelli–Bochner integral formulae in Hermitean Clifford analysis.Bull. Braz. Math. Soc. (N.S.) 40 (3) (2009), 395–416. Zbl 1182.30081, MR 2540516, 10.1007/s00574-009-0018-8
Reference: [7] Brackx, F., Schepper, H. De, Eelbode, D., Souček, V.: The Howe dual pair in Hermitean Clifford analysis.Rev. Mat. Iberoamericana 26 (2) (2010), 449–479. Zbl 1201.30061, MR 2677004, 10.4171/RMI/606
Reference: [8] Brackx, F., Schepper, H. De, Schepper, N. De, Sommen, F.: Hermitean Clifford–Hermite polynomials.Adv. Appl. Clifford Algebras 17 (3) (2007), 311–330. Zbl 1134.30039, MR 2350582, 10.1007/s00006-007-0032-0
Reference: [9] Brackx, F., Schepper, H. De, Sommen, F.: A theoretical framework for wavelet analysis in a Hermitean Clifford setting.Commun. Pure Appl. Anal. 6 (3) (2007), 549–567. Zbl 1149.30036, MR 2318288, 10.3934/cpaa.2007.6.549
Reference: [10] Brackx, F., Schepper, H. De, Sommen, F.: The Hermitian Clifford analysis toolbox.Adv. Appl. Clifford Algebras 18 (3–4) (2008), 451–487. Zbl 1177.30064, MR 2490567, 10.1007/s00006-008-0081-z
Reference: [11] Brackx, F., Schepper, H. De, Souček, V.: On the structure of complex Clifford algebra.accepted for publication in Adv. Appl. Clifford Algebras.
Reference: [12] Colombo, F., Sabadini, I., Sommen, F., Struppa, D. C.: Analysis of Dirac systems and computational algebra.Birkhäuser, Boston, 2004. Zbl 1064.30049, MR 2089988
Reference: [13] Damiano, A., Eelbode, D.: Invariant operators between spaces of $h$–monogenic polynomials.Adv. Appl. Clifford Algebras 19 (2) (2009), 237–251. Zbl 1177.22008, MR 2524668, 10.1007/s00006-009-0155-6
Reference: [14] Delanghe, R., Lávička, R., Souček, V.: The Fischer decomposition for Hodge–de Rham Systems in Euclidean space.to appear.
Reference: [15] Delanghe, R., Sommen, F., Souček, V.: Clifford algebra and spinor–valued functions – A function theory for the Dirac operator.Kluwer Academic Publishers, Dordrecht, 1992. MR 1169463
Reference: [16] Eelbode, D.: Stirling numbers and Spin–Euler polynomials.Experiment. Math. 16 (1) (2007), 55–66. Zbl 1201.30064, MR 2312977, 10.1080/10586458.2007.10128982
Reference: [17] Eelbode, D.: Irreducible $\mathfrak{sl}(m)$–modules of Hermitean monogenics.Complex Var. Elliptic Equ. 53 (10) (2008), 975–987. MR 2453891, 10.1080/17476930802331956
Reference: [18] Eelbode, D., He, F. L.: Taylor series in Hermitean Clifford analysis.Compl. Anal. Oper. Theory. MR 2773058, 10.1007/s11785-009-0036-y
Reference: [19] Fischer, E.: Über die Differentiationsprozesse der Algebra.J. für Math. 148 (1917), 1–78.
Reference: [20] Gilbert, J., Murray, M.: Clifford Algebra and Dirac Operators in Harmonic Analysis.Cambridge University Press, 1991. MR 1130821
Reference: [21] Goodman, R., Wallach, N. R.: Representations and Invariants of the Classical Groups.Cambridge University Press, 2003. MR 1606831
Reference: [22] Gürlebeck, K., Sprössig, W.: Quaternionic and Clifford Calculus for Physicists and Engineers.J. Wiley & Sons, Chichester, 1997.
Reference: [23] Rocha–Chavez, R., Shapiro, M., Sommen, F.: Integral theorems for functions and differential forms in ${\mathbb{C}}_m$.vol. 428, Research Notes in Math., 2002. MR 1889406
Reference: [24] Sabadini, I., Sommen, F.: Hermitian Clifford analysis and resolutions.Math. Methods Appl. Sci. 25 (16–18) (2002), 1395–1414. Zbl 1013.30033, MR 1949504, 10.1002/mma.378
Reference: [25] Sommen, F., Peña, D. Peña: A Martinelli–Bochner formula for the Hermitian Dirac equation.Math. Methods Appl. Sci. 30 (9) (2007), 1049–1055. Zbl 1117.30040, MR 2321942, 10.1002/mma.824
Reference: [26] Stein, E. M., Weiss, G.: Generalization of the Cauchy–Riemann equations and representations of the rotation group.Amer. J. Math. 90 (1968), 163–196. Zbl 0157.18303, MR 0223492, 10.2307/2373431
.

Files

Files Size Format View
ArchMathRetro_046-2010-5_2.pdf 548.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo