Previous |  Up |  Next

Article

Title: Sigma models with non-commuting complex structures and extended supersymmetry (English)
Author: Göteman, M.
Author: Lindström, U.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 46
Issue: 5
Year: 2010
Pages: 323-331
Summary lang: English
.
Category: math
.
Summary: We discuss additional supersymmetries for $\mathcal{N}=(2,2)$ supersymmetric non-linear sigma models described by left and right semichiral superfields. (English)
Keyword: supersymmetry
Keyword: complex geometry
MSC: 51P05
MSC: 81Q60
MSC: 81T60
idZBL: Zbl 1249.81008
idMR: MR2753986
.
Date available: 2010-12-14T15:03:32Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141386
.
Reference: [1] Abou–Zeid, M., Hull, C. M.: The geometry of sigma-models with twisted supersymmetry.Nucl. Phys. B 561 (1999), 293–315, [arXiv:hep-th/9907046]. MR 1729245, 10.1016/S0550-3213(99)00528-3
Reference: [2] Buscher, T., Lindström, U., Roček, M.: New supersymmetric sigma models with Wess-Zumino terms.Phys. Lett. B 202 (1988), 94–98. MR 0930852, 10.1016/0370-2693(88)90859-3
Reference: [3] Gates, S. J., Hull, C. M., Ročcek, M.: Twisted multiplets and new supersymmetric nonlinear sigma models.Nuclear Phys. B 248 (1) (1984), 157–186. MR 0776369
Reference: [4] Göteman, M., Lindström, U.: Pseudo-hyperkahler Geometry and Generalized Kahler Geometry.to be published in Lett. Math. Phys., arXiv:0903.2376 [hep-th].
Reference: [5] Göteman, M., Lindström, U., Roček, M., Ryb, I.: Sigma models with off–shell $N=(4,4)$ supersymmetry and noncommuting complex structures.arXiv:0912.4724 [hep-th].
Reference: [6] Gualtieri, M.: Generalized complex geometry.Ph.D. thesis, Oxford University, 2004, [math/0401221[math-dg]].
Reference: [7] Lindström, U.: Generalized $N = (2,2)$ supersymmetric non-linear sigma models.Phys. Lett. B 587 (2004), 216–224, [arXiv:hep-th/0401100]. MR 2065031, 10.1016/j.physletb.2004.03.014
Reference: [8] Lindström, U., Ivanov, I. T., Roček, M.: New N=4 superfields and sigma models.Phys. Lett. B 328 (1994), 49–54, [arXiv:hep-th/9401091]. MR 1288922, 10.1016/0370-2693(94)90426-X
Reference: [9] Lindström, U., Minasian, R., Tomasiello, A., Zabzine, M.: Generalized complex manifolds and supersymmetry.Commun. Math. Phys. 257 (2005), 235–256. Zbl 1118.53048, MR 2163575, 10.1007/s00220-004-1265-6
Reference: [10] Lindström, U., Roček, M., von Unge, R., Zabzine, M.: Generalized Kaehler manifolds and off-shell supersymmetry.Commun. Math. Phys. 269 (2007), 833–849. Zbl 1114.81077, MR 2276362, 10.1007/s00220-006-0149-3
Reference: [11] Lindström, U., Roček, M., von Unge, R., Zabzine, M.: Linearizing generalized Kähler geometry.JHEP 0704 (2007), 28pp., [arXiv:hep-th/0702126]. MR 2318766
Reference: [12] Yano, K.: On a structure $f$ satisfying $f^3+f=0$.Tech. Rep. Univ. of Washington 12 (1961).
Reference: [13] Yano, K.: On a structure defined by a tensor field of type $(1,1)$ satisfying $f^3+f=0$.Tensor N. S. 14 (1963), 9. MR 0159296
.

Files

Files Size Format View
ArchMathRetro_046-2010-5_3.pdf 489.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo