Full entry |
PDF
(0.4 MB)
Feedback

geometry of ordinary differential equations; normal Cartan connections, cohomology of Lie algebras

References:

[1] Doubrov, B.: **Contact trivialization of ordinary differential equations**. Proc. Conf., Opava (Czech Republic), Differential Geometry and Its Applications, 2001, pp. 73–84. MR 1978764 | Zbl 1047.34040

[2] Doubrov, B.: **Generalized Wilczynski invariants for non-linear ordinary differential equations. Symmetries and overdetermined systems of partial differential equations**. IMA Vol. Math. Appl. 144 (2008), 25–40. DOI 10.1007/978-0-387-73831-4_2 | MR 2384704

[3] Doubrov, B., Komrakov, B., Morimoto, T.: **Equivalence of holonomic differential equations**. Lobachevskij J. Math. 3 (1999), 39–71. MR 1743131 | Zbl 0937.37051

[4] Fuks, D. B.: **Cohomology of infinite-dimensional Lie algebras**. Contemporary Soviet Mathematics, New York: Consultants Bureau, 1986. MR 0874337 | Zbl 0667.17005

[5] Kobayashi, S., Nagano, T.: **On filtered Lie algebras and geometric structures III**. J. Math. Mech. 14 (1965), 679–706. MR 0188364

[6] Kostant, B.: **Lie algebra cohomology and the generalized Borel–Weil theorem**. Ann. of Math. (2) 24 (1961), 329–387. DOI 10.2307/1970237 | MR 0142696 | Zbl 0134.03501

[7] Morimoto, T.: **Geometric structures on filtered manifolds**. Hokkaido Math. J. 22 (1993), 263–347. MR 1245130 | Zbl 0801.53019

[8] Tanaka, N.: **On differential systems, graded Lie algebras and pseudo-groups**. J. Math. Kyoto Univ. 10 (1970), 1–82. MR 0266258 | Zbl 0206.50503

[9] Tanaka, N.: **On the equivalence problems associated with simple graded Lie algebras**. Hokkaido Math. J. 8 (1979), 23–84. MR 0533089 | Zbl 0409.17013

[10] Tanaka, N.: **Geometric theory of ordinary differential equations**. Report of Grant-in-Aid for Scientific Research MESC Japan (1989).

[11] Yamaguchi, K.: **Differential systems associated with simple graded Lie algebras**. Adv. Stud. Pure Math. 22 (1993), 413–494. MR 1274961 | Zbl 0812.17018