Previous |  Up |  Next

Article

Title: Geometry of third order ODE systems (English)
Author: Medvedev, Alexandr
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 46
Issue: 5
Year: 2010
Pages: 351-361
Summary lang: English
.
Category: math
.
Summary: We compute cohomology spaces of Lie algebras that describe differential invariants of third order ordinary differential equations. We prove that the algebra of all differential invariants is generated by 2 tensorial invariants of order 2, one invariant of order 3 and one invariant of order 4. The main computational tool is a Serre-Hochschild spectral sequence and the representation theory of semisimple Lie algebras. We compute differential invariants up to degree 2 as application. (English)
Keyword: geometry of ordinary differential equations
Keyword: normal Cartan connections, cohomology of Lie algebras
MSC: 17B56
MSC: 34A26
MSC: 53B15
idZBL: Zbl 1249.34024
idMR: MR2753989
.
Date available: 2010-12-14T15:07:43Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141389
.
Reference: [1] Doubrov, B.: Contact trivialization of ordinary differential equations.Proc. Conf., Opava (Czech Republic), Differential Geometry and Its Applications, 2001, pp. 73–84. Zbl 1047.34040, MR 1978764
Reference: [2] Doubrov, B.: Generalized Wilczynski invariants for non-linear ordinary differential equations. Symmetries and overdetermined systems of partial differential equations.IMA Vol. Math. Appl. 144 (2008), 25–40. MR 2384704, 10.1007/978-0-387-73831-4_2
Reference: [3] Doubrov, B., Komrakov, B., Morimoto, T.: Equivalence of holonomic differential equations.Lobachevskij J. Math. 3 (1999), 39–71. Zbl 0937.37051, MR 1743131
Reference: [4] Fuks, D. B.: Cohomology of infinite-dimensional Lie algebras.Contemporary Soviet Mathematics, New York: Consultants Bureau, 1986. Zbl 0667.17005, MR 0874337
Reference: [5] Kobayashi, S., Nagano, T.: On filtered Lie algebras and geometric structures III.J. Math. Mech. 14 (1965), 679–706. MR 0188364
Reference: [6] Kostant, B.: Lie algebra cohomology and the generalized Borel–Weil theorem.Ann. of Math. (2) 24 (1961), 329–387. Zbl 0134.03501, MR 0142696, 10.2307/1970237
Reference: [7] Morimoto, T.: Geometric structures on filtered manifolds.Hokkaido Math. J. 22 (1993), 263–347. Zbl 0801.53019, MR 1245130
Reference: [8] Tanaka, N.: On differential systems, graded Lie algebras and pseudo-groups.J. Math. Kyoto Univ. 10 (1970), 1–82. Zbl 0206.50503, MR 0266258
Reference: [9] Tanaka, N.: On the equivalence problems associated with simple graded Lie algebras.Hokkaido Math. J. 8 (1979), 23–84. Zbl 0409.17013, MR 0533089
Reference: [10] Tanaka, N.: Geometric theory of ordinary differential equations.Report of Grant-in-Aid for Scientific Research MESC Japan (1989).
Reference: [11] Yamaguchi, K.: Differential systems associated with simple graded Lie algebras.Adv. Stud. Pure Math. 22 (1993), 413–494. Zbl 0812.17018, MR 1274961
.

Files

Files Size Format View
ArchMathRetro_046-2010-5_6.pdf 436.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo