Previous |  Up |  Next

Article

Title: An integral formula of hyperbolic type for solutions of the Dirac equation on Minkowski space with initial conditions on a hyperboloid (English)
Author: Sikora, Martin
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 46
Issue: 5
Year: 2010
Pages: 363-376
Summary lang: English
.
Category: math
.
Summary: The Dirac equation for spinor-valued fields $f$ on the Minkowski space of even dimension form a hyperbolic system of partial differential equations. In the paper, we are showing how to reconstruct the solution from initial data given on the upper sheet $H^+$ of the hyperboloid. In particular, we derive an integral formula expressing the value of $f$ in a chosen point $p$ as an integral over a compact cycle given by the intersection of the null cone with $H^+$ in the Minkowski space ${\mathbb{M}}$. (English)
Keyword: Clifford analysis
Keyword: integral formula of hyperbolic type
Keyword: hyperboloid
Keyword: Minkowski space
MSC: 30E20
MSC: 30G35
MSC: 35Q41
idZBL: Zbl 1249.30122
idMR: MR2753990
.
Date available: 2010-12-14T15:09:01Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141390
.
Reference: [1] Brackx, F., Delanghe, R., Sommen, F.: Clifford analysis.Pitman Advanced Pub. Program, 1982. Zbl 0529.30001, MR 0697564
Reference: [2] Bureš, J., Souček, V.: The Penrose transform on isotropic Grassmannians, in 75 Years of Radon transform.Conf. Proc. Lecture Notes Math. Phys., 1994. MR 1313925
Reference: [3] Delanghe, R., Lávička, R., Souček, V.: On polynomial solutions of generalized Moisil-Theodoresco systems and Hodge-de Rham systems.arXiv:0908.0842, pp.11, 08 2009.
Reference: [4] Delanghe, R., Sommen, F., Souček, V.: Clifford algebra and spinor-valued functions. A function theory for the Dirac operator.vol. 53, Math. Appl., 1992. MR 1169463
Reference: [5] Dodson, M., Souček, V.: Leray residues applied to the solution of the Laplace and wave equations.Geometry seminars 1984 (Italian) (Bologna, 1984), Univ. Stud. Bologna, 1985, pp. 93–107. MR 0866151
Reference: [6] Eelbode, D.: Clifford analysis on the hyperbolic unit ball.Ph.D. thesis, Ghent University, 2005. MR 2715781
Reference: [7] Frenkel, I., Libine, M.: Quaternionic analysis, representation theory and physics.Adv. Math. 218 (2008), 1806–1877. Zbl 1167.30030, MR 2431662, 10.1016/j.aim.2008.03.021
Reference: [8] Gürlebeck, K., Sprössig, W.: Quaternionic and Clifford Calculus for Physicists and Engineers.John Wiley $\&$ Sons, Inc., 1997.
Reference: [9] Gürsey, F., Tze, C.-H.: On the role of division, Jordan and related algebras in particle physics.World Scientific Publishing Co., 1996. MR 1626607
Reference: [10] Leutwiler, H.: Modified Clifford analysis.Complex Variables and Elliptic Equations 17 (3,4) (1992), 153–171, http://dx.doi.org/10.1080/17476939208814508. Zbl 0758.30037, MR 1147046, 10.1080/17476939208814508
Reference: [11] Libine, M.: Hyperbolic Cauchy integral formula for the split complex number.arXiv:0712.0375v1, pp.6, 12 2007.
Reference: [12] Souček, V.: Complex-quaternionic analysis applied to spin–1/2 massless fields.Complex Variables and Elliptic Equations 1 (4) (1983), 327–346, http://dx.doi.org/10.1080/17476938308814023. MR 0706989, 10.1080/17476938308814023
Reference: [13] Sudbery, A.: Quaternionic analysis.Math. Proc. Cambridge Philos. Soc. 85 (1979), 199–225. Zbl 0399.30038, MR 0516081, 10.1017/S0305004100055638
.

Files

Files Size Format View
ArchMathRetro_046-2010-5_7.pdf 501.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo