Previous |  Up |  Next

Article

Title: Mathematical modeling and simulation of flow in domains separated by leaky semipermeable membrane including osmotic effect (English)
Author: Hron, Jaroslav
Author: Neuss-Radu, Maria
Author: Pustějovská, Petra
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 56
Issue: 1
Year: 2011
Pages: 51-68
Summary lang: English
.
Category: math
.
Summary: In this paper, we propose a mathematical model for flow and transport processes of diluted solutions in domains separated by a leaky semipermeable membrane. We formulate transmission conditions for the flow and the solute concentration across the membrane which take into account the property of the membrane to partly reject the solute, the accumulation of rejected solute at the membrane, and the influence of the solute concentration on the volume flow, known as osmotic effect. The model is solved numerically for the situation of a domain in two dimensions, consisting of two subdomains separated by a rigid fixed membrane. The numerical results for different values of the material parameters and different computational settings are compared. (English)
Keyword: leaky semipermeable membrane
Keyword: osmotic pressure
Keyword: transmission conditions
Keyword: finite element method
MSC: 34C60
MSC: 74K15
MSC: 76D05
MSC: 82C70
idZBL: Zbl 1224.74062
idMR: MR2807426
DOI: 10.1007/s10492-011-0009-0
.
Date available: 2011-01-03T14:49:16Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/141406
.
Reference: [1] Cheng, T.: Flux analysis by modified osmotic-pressure model for laminar ultrafiltration of macromolecular solutions.Separation and Purification Technology 13 (1998), 1-8. 10.1016/S1383-5866(97)00051-8
Reference: [2] Coleman, P. J., Scott, D., Mason, R. M., Levick, J. R.: Characterization of the effect of high molecular weight hyaluronan on trans-synovial flow in rabbit kness.The Journal of Physiology 514 (1999), 265-282. 10.1111/j.1469-7793.1999.265af.x
Reference: [3] Hron, J., Leroux, C., Málek, J., Rajagopal, K.: Flows of incompressible fluids subject to Naviers slip on the boundary.Comput. Math. Appl. 56 (2008), 2128-2143. MR 2466718, 10.1016/j.camwa.2008.03.058
Reference: [4] Kedem, O., Katchalsky, A.: Thermodynamic analysis of the permeability of biological membranes to non-electrolytes.Biochimica et Biophysica Acta 27 (1958), 229-246. 10.1016/0006-3002(58)90330-5
Reference: [5] Kocherginsky, N.: Mass transport and membrane separations: Universal description in terms of physicochemical potential and Einstein's mobility.Chemical Engineering Science 65 (2010), 1474-1489. 10.1016/j.ces.2009.10.024
Reference: [6] Neuss-Radu, M., Jäger, W.: Effective transmission conditions for reaction-diffusion processes in domains separated by an interface.SIAM J. Math. Anal. 39 (2007), 687-720. Zbl 1145.35017, MR 2349863, 10.1137/060665452
Reference: [7] Patlak, C., Goldstein, D., Hoffman, J.: The flow of solute and solvent across a two-membrane system.J. Theoretical Biology 5 (1963), 426-442. 10.1016/0022-5193(63)90088-2
Reference: [8] Rajagopal, K., Wineman, A.: The diffusion of a fluid through a highly elastic spherical membrane.Int. J. Eng. Sci. 21 (1983), 1171-1183. Zbl 0538.76091, 10.1016/0020-7225(83)90081-2
Reference: [9] Scott, D., Coleman, P., Mason, R., Levick, J.: Concentration dependence of interstitial flow buffering by hyaluronan in sinovial joints.Microvasc. Research 59 (2000), 345-353. 10.1006/mvre.1999.2231
Reference: [10] Tao, L., Humphrey, J., Rajagopal, K.: A mixture theory for heat-induced alterations in hydration and mechanical properties in soft tissues.Int. J. Eng. Sci. 39 (2001), 1535-1556. 10.1016/S0020-7225(01)00019-2
.

Files

Files Size Format View
AplMat_56-2011-1_4.pdf 1.784Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo