Previous |  Up |  Next

Article

Title: The effective boundary conditions for vector fields on domains with rough boundaries: Applications to fluid mechanics (English)
Author: Feireisl, Eduard
Author: Nečasová, Šárka
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 56
Issue: 1
Year: 2011
Pages: 39-49
Summary lang: English
.
Category: math
.
Summary: The Navier-Stokes system is studied on a family of domains with rough boundaries formed by oscillating riblets. Assuming the complete slip boundary conditions we identify the limit system, in particular, we show that the limit velocity field satisfies boundary conditions of a mixed type depending on the characteristic direction of the riblets. (English)
Keyword: Navier-Stokes system
Keyword: rough boundary
Keyword: slip boundary condition
MSC: 35Q35
MSC: 76D05
idZBL: Zbl 1224.35340
idMR: MR2807425
DOI: 10.1007/s10492-011-0008-1
.
Date available: 2011-01-03T14:48:15Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/141405
.
Reference: [1] Amirat, Y., Bresch, D., Lemoine, J., Simon, J.: Effect of rugosity on a flow governed by stationary Navier-Stokes equations.Q. Appl. Math. 59 (2001), 768-785. Zbl 1019.76014, MR 1866556, 10.1090/qam/1866556
Reference: [2] Bucur, D., Feireisl, E., Nečasová, Š.: On the asymptotic limit of flows past a ribbed boundary.J. Math. Fluid Mech. 10 (2008), 554-568. Zbl 1189.35219, MR 2461251, 10.1007/s00021-007-0242-1
Reference: [3] Bucur, D., Feireisl, E., Nečasová, Š.: Boundary behavior of viscous fluids: Influence of wall roughness and friction-driven boundary conditions.Arch. Ration. Mech. Anal. 197 (2010), 117-138. Zbl 1273.76073, MR 2646816, 10.1007/s00205-009-0268-z
Reference: [4] Bucur, D., Feireisl, E., Nečasová, Š., Wolf, J.: On the asymptotic limit of the Navier-Stokes system on domains with rough boundaries.J. Differ. Equations 244 (2008), 2890-2908. Zbl 1143.35080, MR 2418180, 10.1016/j.jde.2008.02.040
Reference: [5] Bulíček, M., Málek, J., Rajagopal, K. R.: Navier's slip and evolutionary Navier-Stokes-like systems with pressure and shear-rate dependent viscosity.Indiana Univ. Math. J. 56 (2007), 51-85. Zbl 1129.35055, MR 2305930, 10.1512/iumj.2007.56.2997
Reference: [6] Casado-Díaz, J., Fernández-Cara, E., Simon, J.: Why viscous fluids adhere to rugose walls: A mathematical explanation.J. Differ. Equations 189 (2003), 526-537. Zbl 1061.76014, MR 1964478, 10.1016/S0022-0396(02)00115-8
Reference: [7] Jaeger, W., Mikelić, A.: On the roughness-induced effective boundary conditions for an incompressible viscous flow.J. Differ. Equations 170 (2001), 96-122. Zbl 1009.76017, MR 1813101, 10.1006/jdeq.2000.3814
Reference: [8] Koch, H., Solonnikov, V. A.: $L_p$ estimates for a solution to the nonstationary Stokes equations.J. Math. Sci. 106 (2001), 3042-3072. Zbl 0987.35121, MR 1906033, 10.1023/A:1011375706754
Reference: [9] Nitsche, J. A.: On Korn's second inequality.RAIRO, Anal. Numér. 15 (1981), 237-248. Zbl 0467.35019, MR 0631678, 10.1051/m2an/1981150302371
Reference: [10] Sohr, H.: The Navier-Stokes Equations. An Elementary Functional Analytic Approach.Birkhäuser Basel (2001). Zbl 0983.35004, MR 1928881
Reference: [11] Wolf, J.: Existence of weak solutions to the equations of non-stationary motion of non-Newtonian fluids with shear rate dependent viscosity.J. Math. Fluid Mech. 9 (2007), 104-138. Zbl 1151.76426, MR 2305828, 10.1007/s00021-006-0219-5
.

Files

Files Size Format View
AplMat_56-2011-1_3.pdf 255.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo