Previous |  Up |  Next


poroacoustics; Darcy's law; traveling waves; shock and acceleration waves
A mathematical analysis of poroacoustic traveling wave phenomena is presented. Assuming that the fluid phase satisfies the perfect gas law and that the drag offered by the porous matrix is described by Darcy's law, exact traveling wave solutions (TWS)s, as well as asymptotic/approximate expressions, are derived and examined. In particular, stability issues are addressed, shock and acceleration waves are shown to arise, and special/limiting cases are noted. Lastly, connections to other fields are pointed out and possible extensions of this work are briefly discussed.
[1] Beavers, G. S., Sparrow, E. M.: Compressible gas flow through a porous material. Int. J. Heat Mass Transfer 14 (1971), 1855-1859. DOI 10.1016/0017-9310(71)90053-6
[2] Beyer, R. T.: The parameter $B/A$. In: Nonlinear Acoustics M. F. Hamilton, D. T. Blackstock Academic Press San Diego (1997), 25-39.
[3] Boomsma, K., Poulikakos, D.: The effects of compression and pore size variations on the liquid flow characteristics in metal foams. ASME J. Fluids Eng. 124 (2002), 263-272. DOI 10.1115/1.1429637
[4] Christov, I., Christov, C. I., Jordan, P. M.: Modeling weakly nonlinear acoustic wave propagation. Q. J. Mech. Appl. Math. 60 (2007), 473-495. DOI 10.1093/qjmam/hbm017 | Zbl 1125.76379
[5] Ciarletta, M., Straughan, B., Tibullo, V.: Anisotropic effects on poroacoustic acceleration waves. Mech. Res. Commun. 37 (2010), 137-140. DOI 10.1016/j.mechrescom.2009.11.012 | Zbl 1272.76219
[6] al., Z. E. A. Fellah et: Ultrasonic characterization of air-saturated double-layered porous media in time domain. J. Appl. Phys. 108 (2010).
[7] Jordan, P. M.: Finite-amplitude acoustic traveling waves in a fluid that saturates a porous medium: Acceleration wave formation. Phys. Lett. A 355 (2006), 216-221. DOI 10.1016/j.physleta.2006.02.033
[8] Jordan, P. M.: Some remarks on nonlinear poroacoustic phenomena. Math. Comput. Simul. 80 (2009), 202-211. DOI 10.1016/j.matcom.2009.06.004 | MR 2573280
[9] al., P. M. Jordan et: On the propagation of finite-amplitude acoustic waves in mono-relaxing media. In: Continuum Mechanics, Fluids, Heat. Proceedings of the 5th IASME/WSEAS International Conference on Continuum Mechanics, Cambridge, UK, February 23-25, 2010 S. H. Sohrab, H. J. Catrakis, N. Kobasko WSEAS Press Athens (2010), 67-72.
[10] Kannan, K., Rajagopal, K. R.: Flow through porous media due to high pressure gradients. Appl. Math. Comput. 199 (2008), 748-759. DOI 10.1016/j.amc.2007.10.038 | MR 2420602 | Zbl 1228.76161
[11] Makarov, S., Ochmann, M.: Nonlinear and thermoviscous phenomena in acoustics, Part I. Acta Acustica united with Acustica 82 (1996), 579-606.
[12] Málek, J., Rajagopal, K. R.: Mathematical issues concerning the Navier-Stokes equations and some of its generalizations. In: Handbook of Differential Equations: Evolutionary Equations, Vol. 2 C. M. Dafermos, E. Feireisl Elsevier/North Holland Amsterdam (2005), 371-459. DOI 10.1016/S1874-5717(06)80008-3 | MR 2182831 | Zbl 1095.35027
[13] Morse, P. M., Ingard, K. U.: Theoretical Acoustics. McGraw-Hill New York (1968).
[14] Nield, D. A., Bejan, A.: Convection in Porous Media, 2nd ed. Springer New York (1999). MR 1656781 | Zbl 0924.76001
[15] Payne, L. E., Rodrigues, J. F., Straughan, B.: Effect of anisotropic permeability on Darcy's law. Math. Methods Appl. Sci. 24 (2001), 427-438. DOI 10.1002/mma.228 | MR 1821935 | Zbl 0984.76024
[16] Pierce, A. D.: Acoustics: An Introduction to its Physical Principles and Applications. Acoustical Society of America Woodbury (1989), 588-593.
[17] Rajagopal, K. R.: On a hierarchy of approximate models for flows of incompressible fluids through porous solids. Math. Models Methods Appl. Sci. 17 (2007), 215-252. DOI 10.1142/S0218202507001899 | MR 2292356 | Zbl 1123.76066
[18] Rajagopal, K. R., Saccomandi, G., Vergori, L.: A systematic approximation for the equations governing convection-diffusion in a porous medium. Nonlinear Anal., Real World Appl. 11 (2010), 2366-2375. MR 2661906 | Zbl 1194.35336
[19] Rajagopal, K. R., Tao, L.: Mechanics of Mixtures. Appendix B. World Scientific Singapore (1995). MR 1370661
[20] Rajagopal, K. R., Tao, L.: On the propagation of waves through porous solids. Int. J. Non-Linear Mech. 40 (2005), 373-380. DOI 10.1016/j.ijnonlinmec.2004.07.004
[21] Saravanan, U., Rajagopal, K. R.: On the role of inhomogeneities in the deformation of elastic bodies. Math. Mech. Solids 8 (2003), 349-376. DOI 10.1177/10812865030084002 | MR 1992913 | Zbl 1059.74015
[22] Scheidegger, A. E.: The Physics of Flow Through Porous Media, 3rd ed. University of Toronto Press Toronto (1974).
[23] Straughan, B.: Stability and Wave Motion in Porous Media. Springer New York (2008). MR 2433781 | Zbl 1149.76002
[24] Thompson, P. A.: Compressible-Fluid Dynamics. McGraw-Hill New York (1972). Zbl 0251.76001
[25] Truesdell, C., Rajagopal, K. R.: An Introduction to the Mechanics of Fluids. Birkhäuser Boston (2000). MR 1731441 | Zbl 0942.76001
[26] Whitham, G. B.: Linear and Nonlinear Waves. John Wiley & Sons New York (1974). MR 0483954 | Zbl 0373.76001
Partner of
EuDML logo