Previous |  Up |  Next

Article

Title: A note on poroacoustic traveling waves under Darcy's law: Exact solutions (English)
Author: Jordan, P. M.
Author: Fulford, J. K.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 56
Issue: 1
Year: 2011
Pages: 99-115
Summary lang: English
.
Category: math
.
Summary: A mathematical analysis of poroacoustic traveling wave phenomena is presented. Assuming that the fluid phase satisfies the perfect gas law and that the drag offered by the porous matrix is described by Darcy's law, exact traveling wave solutions (TWS)s, as well as asymptotic/approximate expressions, are derived and examined. In particular, stability issues are addressed, shock and acceleration waves are shown to arise, and special/limiting cases are noted. Lastly, connections to other fields are pointed out and possible extensions of this work are briefly discussed. (English)
Keyword: poroacoustics
Keyword: Darcy's law
Keyword: traveling waves
Keyword: shock and acceleration waves
MSC: 33E30
MSC: 35C07
MSC: 35L60
MSC: 35L67
MSC: 35Q35
MSC: 76N15
MSC: 76Q05
MSC: 76S05
idZBL: Zbl 1224.33014
idMR: MR2807428
DOI: 10.1007/s10492-011-0011-6
.
Date available: 2011-01-03T14:53:00Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/141408
.
Reference: [1] Beavers, G. S., Sparrow, E. M.: Compressible gas flow through a porous material.Int. J. Heat Mass Transfer 14 (1971), 1855-1859. 10.1016/0017-9310(71)90053-6
Reference: [2] Beyer, R. T.: The parameter $B/A$.In: Nonlinear Acoustics M. F. Hamilton, D. T. Blackstock Academic Press San Diego (1997), 25-39.
Reference: [3] Boomsma, K., Poulikakos, D.: The effects of compression and pore size variations on the liquid flow characteristics in metal foams.ASME J. Fluids Eng. 124 (2002), 263-272. 10.1115/1.1429637
Reference: [4] Christov, I., Christov, C. I., Jordan, P. M.: Modeling weakly nonlinear acoustic wave propagation.Q. J. Mech. Appl. Math. 60 (2007), 473-495. Zbl 1125.76379, 10.1093/qjmam/hbm017
Reference: [5] Ciarletta, M., Straughan, B., Tibullo, V.: Anisotropic effects on poroacoustic acceleration waves.Mech. Res. Commun. 37 (2010), 137-140. Zbl 1272.76219, 10.1016/j.mechrescom.2009.11.012
Reference: [6] al., Z. E. A. Fellah et: Ultrasonic characterization of air-saturated double-layered porous media in time domain.J. Appl. Phys. 108 (2010).
Reference: [7] Jordan, P. M.: Finite-amplitude acoustic traveling waves in a fluid that saturates a porous medium: Acceleration wave formation.Phys. Lett. A 355 (2006), 216-221. 10.1016/j.physleta.2006.02.033
Reference: [8] Jordan, P. M.: Some remarks on nonlinear poroacoustic phenomena.Math. Comput. Simul. 80 (2009), 202-211. MR 2573280, 10.1016/j.matcom.2009.06.004
Reference: [9] al., P. M. Jordan et: On the propagation of finite-amplitude acoustic waves in mono-relaxing media.In: Continuum Mechanics, Fluids, Heat. Proceedings of the 5th IASME/WSEAS International Conference on Continuum Mechanics, Cambridge, UK, February 23-25, 2010 S. H. Sohrab, H. J. Catrakis, N. Kobasko WSEAS Press Athens (2010), 67-72.
Reference: [10] Kannan, K., Rajagopal, K. R.: Flow through porous media due to high pressure gradients.Appl. Math. Comput. 199 (2008), 748-759. Zbl 1228.76161, MR 2420602, 10.1016/j.amc.2007.10.038
Reference: [11] Makarov, S., Ochmann, M.: Nonlinear and thermoviscous phenomena in acoustics, Part I.Acta Acustica united with Acustica 82 (1996), 579-606.
Reference: [12] Málek, J., Rajagopal, K. R.: Mathematical issues concerning the Navier-Stokes equations and some of its generalizations.In: Handbook of Differential Equations: Evolutionary Equations, Vol. 2 C. M. Dafermos, E. Feireisl Elsevier/North Holland Amsterdam (2005), 371-459. Zbl 1095.35027, MR 2182831, 10.1016/S1874-5717(06)80008-3
Reference: [13] Morse, P. M., Ingard, K. U.: Theoretical Acoustics.McGraw-Hill New York (1968).
Reference: [14] Nield, D. A., Bejan, A.: Convection in Porous Media, 2nd ed.Springer New York (1999). Zbl 0924.76001, MR 1656781
Reference: [15] Payne, L. E., Rodrigues, J. F., Straughan, B.: Effect of anisotropic permeability on Darcy's law.Math. Methods Appl. Sci. 24 (2001), 427-438. Zbl 0984.76024, MR 1821935, 10.1002/mma.228
Reference: [16] Pierce, A. D.: Acoustics: An Introduction to its Physical Principles and Applications.Acoustical Society of America Woodbury (1989), 588-593.
Reference: [17] Rajagopal, K. R.: On a hierarchy of approximate models for flows of incompressible fluids through porous solids.Math. Models Methods Appl. Sci. 17 (2007), 215-252. Zbl 1123.76066, MR 2292356, 10.1142/S0218202507001899
Reference: [18] Rajagopal, K. R., Saccomandi, G., Vergori, L.: A systematic approximation for the equations governing convection-diffusion in a porous medium.Nonlinear Anal., Real World Appl. 11 (2010), 2366-2375. Zbl 1194.35336, MR 2661906
Reference: [19] Rajagopal, K. R., Tao, L.: Mechanics of Mixtures. Appendix B.World Scientific Singapore (1995). MR 1370661
Reference: [20] Rajagopal, K. R., Tao, L.: On the propagation of waves through porous solids.Int. J. Non-Linear Mech. 40 (2005), 373-380. 10.1016/j.ijnonlinmec.2004.07.004
Reference: [21] Saravanan, U., Rajagopal, K. R.: On the role of inhomogeneities in the deformation of elastic bodies.Math. Mech. Solids 8 (2003), 349-376. Zbl 1059.74015, MR 1992913, 10.1177/10812865030084002
Reference: [22] Scheidegger, A. E.: The Physics of Flow Through Porous Media, 3rd ed.University of Toronto Press Toronto (1974).
Reference: [23] Straughan, B.: Stability and Wave Motion in Porous Media.Springer New York (2008). Zbl 1149.76002, MR 2433781
Reference: [24] Thompson, P. A.: Compressible-Fluid Dynamics.McGraw-Hill New York (1972). Zbl 0251.76001
Reference: [25] Truesdell, C., Rajagopal, K. R.: An Introduction to the Mechanics of Fluids.Birkhäuser Boston (2000). Zbl 0942.76001, MR 1731441
Reference: [26] Whitham, G. B.: Linear and Nonlinear Waves.John Wiley & Sons New York (1974). Zbl 0373.76001, MR 0483954
.

Files

Files Size Format View
AplMat_56-2011-1_6.pdf 337.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo