Previous |  Up |  Next

Article

Title: Existence results for first order impulsive functional differential equations with state-dependent delay (English)
Author: Benchohra, Mouffak
Author: Hedia, Benaouda
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 49
Issue: 2
Year: 2010
Pages: 5-19
Summary lang: English
.
Category: math
.
Summary: In this paper we study the existence of solutions for impulsive differential equations with state dependent delay. Our results are based on the Leray–Schauder nonlinear alternative and Burton–Kirk fixed point theorem for the sum of two operators. (English)
Keyword: Differential equation
Keyword: state-dependent delay
Keyword: fixed point
Keyword: impulses
Keyword: infinite delay
MSC: 34A37
idZBL: Zbl 1237.34138
idMR: MR2796943
.
Date available: 2011-02-18T07:33:50Z
Last updated: 2013-09-18
Stable URL: http://hdl.handle.net/10338.dmlcz/141412
.
Reference: [1] Abada, N., Agarwal, R. P., Benchohra, M., Hammouche, H.: Existence results for nondensely defined impulsive semilinear functional differential equations with state-dependent delay. Asian-Eur. J. Math. 1, 4 (2008), 449–468. Zbl 1179.34070, MR 2474181, 10.1142/S1793557108000382
Reference: [2] Adimy, M., Bouzahir, H., Ezzinbi, K.: Local existence and stability for some partial functional differential equations with unbounded delay. Nonlinear Anal. 48 (2002), 323–348. MR 1869515, 10.1016/S0362-546X(00)00184-X
Reference: [3] Adimy, M, Ezzinbi, K.: A class of linear partial neutral functional-differential equations with nondense domain. J. Differential Equations 147 (1998), 285–332. Zbl 0915.35109, MR 1633941, 10.1006/jdeq.1998.3446
Reference: [4] Ait Dads, E., Ezzinbi, K.: Boundedness and almost periodicity for some state-dependent delay differential equations. Electron. J. Differential Equations 2002, 67 (2002), 1–13. MR 1921140
Reference: [5] Aiello, W. G., Freedman, H. I., Wu, J.: Analysis of a model representing stage-structured population growth with state-dependent time delay. SIAM J. Appl. Math. 52, 3 (1992), 855–869. Zbl 0760.92018, MR 1163810, 10.1137/0152048
Reference: [6] Anguraj, A., Arjunan, M. M., Hernàndez, E. M.: Existence results for an impulsive neutral functional differential equation with state-dependent delay. Appl. Anal. 86, 7 (2007), 861–872. MR 2355543, 10.1080/00036810701354995
Reference: [7] Bainov, D. D., Simeonov, P. S.: Systems with Impulsive effect. Horwood, Chichister, 1989. MR 1010418
Reference: [8] Benchohra, M., Henderson, J., Ntouyas, S. K.: Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation, Vol 2, New York, 2006. Zbl 1130.34003, MR 2322133
Reference: [9] Burton, T. A., Kirk, C.: A fixed point theorem of Krasnoselskiii–Schaefer type. Math. Nachr. 189 (1998), 23–31. MR 1492921, 10.1002/mana.19981890103
Reference: [10] Cao, Y., Fan, J., Gard, T. C.: The effects of state-dependent time delay on a stage-structured population growth model. Nonlinear Anal. 19, 2 (1992), 95–105. Zbl 0777.92014, MR 1174461, 10.1016/0362-546X(92)90113-S
Reference: [11] Corduneanu, C., Lakshmikantham, V.: Equations with unbounded delay. Nonlinear Anal. 4 (1980), 831–877. Zbl 0449.34048, MR 0586852, 10.1016/0362-546X(80)90001-2
Reference: [12] Domoshnitsky, A., Drakhlin, M., Litsyn, E.: On equations with delay depending on solution. Nonlinear Anal. 49, 5 (2002), 689–701. Zbl 1012.34066, MR 1894304, 10.1016/S0362-546X(01)00132-8
Reference: [13] Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York, 2003. Zbl 1025.47002, MR 1987179
Reference: [14] Hale, J., Kato, J.: Phase space for retarded equations with infinite delay. Funkc. Ekvac. 21 (1978), 11–41. Zbl 0383.34055, MR 0492721
Reference: [15] Hale, J. K., Verduyn Lunel, S. M.: Introduction to Functional Differential Equations. Applied Mathematical Sciences 99, Springer, New York, 1993. Zbl 0787.34002, MR 1243878
Reference: [16] Hartung, F.: Linearized stability in periodic functional differential equations with state-dependent delays. J. Comput. Appl. Math. 174 (2005), 201–211. Zbl 1077.34074, MR 2106436, 10.1016/j.cam.2004.04.006
Reference: [17] Hartung, F.: Parameter estimation by quasilinearization in functional differential equations with state-dependent delays: a numerical study. Proceedings of the Third World Congress of Nonlinear Analysts, Part 7 (Catania, 2000), Nonlinear Anal. 47 (2001), 4557–4566. Zbl 1042.34582, MR 1975850
Reference: [18] Hartung, F., Turi, J.: Identification of parameters in delay equations with state-dependent delays. Nonlinear Anal. 29 (1997), 1303–1318. Zbl 0894.34071, MR 1472420, 10.1016/S0362-546X(96)00100-9
Reference: [19] Hernández, E., Prokopczyk, A., Ladeira, L.: A note on partial functional differential equations with state-dependent delay. Nonlinear Anal. Real World Appl. 7 (2006), 510–519. Zbl 1109.34060, MR 2235215
Reference: [20] Hernández, E., Sakthivel, R., Tanaka Aki, S.: Existence results for impulsive evolution differential equations with state-dependent delay. Electron. J. Differential Equations 2008, 28 (2008), 1–11. MR 2390434
Reference: [21] Hino, Y., Murakami, S., Naito, T.: Functional Differential Equations with Unbounded Delay. Springer-Verlag, Berlin, 1991. MR 1122588
Reference: [22] Kolmanovskii, V., Myshkis, A.: Introduction to the Theory and Applications of Functional-Differential Equations. Kluwer Academic Publishers, Dordrecht, 1999. Zbl 0917.34001, MR 1680144
Reference: [23] Lakshmikantham, V., Bainov D. D., Simeonov, P. S.: Theory of Impulsive Differntial Equations.. World Scientific, Singapore, 1989. MR 1082551
Reference: [24] Lakshmikantham, V., Wen, L., Zhang, B.: Theory of Differential Equations with Unbounded Delay. Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1994. Zbl 0823.34069, MR 1319339
Reference: [25] Liang, J., Xiao, Ti-jun: The Cauchy problem for non linear abstract fuctionnal differential with infinte delay. Comput. Math. Appl. 40 (2000), 693–707. MR 1776686, 10.1016/S0898-1221(00)00188-7
Reference: [26] Rezounenko, A. V., Wu, J.: A non-local PDE model for population dynamics with state-selective delay: Local theory and global attractors. J. Comput. Appl. Math. 190 (2006), 99–113. Zbl 1082.92039, MR 2209496, 10.1016/j.cam.2005.01.047
Reference: [27] Samoilenko, A. M., Perestyuk, N. A.: Impulsive Differential Equations. World Scientific, Singapore, 1995. Zbl 0837.34003, MR 1355787
Reference: [28] Willé, D. R., Baker, C. T. H.: Stepsize control and continuity consistency for state-dependent delay-differential equations. J. Comput. Appl. Math. 53 (1994), 163–170. MR 1306123, 10.1016/0377-0427(94)90043-4
Reference: [29] Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York, 1996. Zbl 0870.35116, MR 1415838
.

Files

Files Size Format View
ActaOlom_49-2010-2_1.pdf 262.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo