Title:
|
Medial quasigroups of type $(n,k)$ (English) |
Author:
|
Vanžurová, Alena |
Language:
|
English |
Journal:
|
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
ISSN:
|
0231-9721 |
Volume:
|
49 |
Issue:
|
2 |
Year:
|
2010 |
Pages:
|
107-122 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Our aim is to demonstrate how the apparatus of groupoid terms (on two variables) might be employed for studying properties of parallelism in the so called $(n,k)$-quasigroups. We show that an incidence structure associated with a medial quasigroup of type $(n,k)$, $n>k\ge 3$, is either an affine space of dimension at least three, or a desarguesian plane. Conversely, if we start either with an affine space of order $k>2$ and dimension $m$, or with a desarguesian affine plane of order $k>2$ then there is a medial quasigroup of type $(k^m,k)$, $m>2$ such that the incidence structure naturally associated to a quasigroup is isomorphic with the starting one (the simplest case $k=2$ can be examined separately but is of little interest). The proofs are mostly based on properties of groupoid term functions, applied to idempotent medial quasigroups (idempotency means that $x\cdot x=x$ holds, and mediality means that the identity $(xy)(uv)=(xu)(yv)$ is satisfied). (English) |
Keyword:
|
Quasigroup |
Keyword:
|
idempotent groupoid term |
Keyword:
|
mediality |
Keyword:
|
incidence structure |
Keyword:
|
parallelism |
Keyword:
|
affine space |
Keyword:
|
desarguesian affine plane |
MSC:
|
05B25 |
MSC:
|
20N05 |
idZBL:
|
Zbl 1236.20066 |
idMR:
|
MR2796951 |
. |
Date available:
|
2011-02-18T07:41:56Z |
Last updated:
|
2013-09-18 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141421 |
. |
Reference:
|
[1] Belousov, V. D.: Transitive distributive quasigroups. Ukr. Mat. Zhur 10, 1 (1958), 13–22. |
Reference:
|
[2] Belousov, V. D.: Foundations of the theory of quasigroups and loops. Nauka, Moscow, 1967, (in Russian). MR 0218483 |
Reference:
|
[3] Bruck, R. H.: A Survey of Binary Systems. Springer, Berlin, 1958. Zbl 0081.01704, MR 0093552 |
Reference:
|
[4] Denecke., K., Wismath, Sh. L.: Universal Algebra and Applications in Theoretical Computer Science. Chapman and Hall/CRC, 2002. Zbl 0993.08001, MR 1887177 |
Reference:
|
[5] Duplák, J.: On some permutations of a medial quasigroup. Mat. Čas. 24 (1974), 315–324, (in Russian). MR 0384971 |
Reference:
|
[6] Duplák, J.: On some properties of transitive quasigroups. Zborník Ped. fak. Univ. Šafárika 1 (1976), 29–35, (in Slovak). |
Reference:
|
[7] Duplák, J.: Quasigroups and translation planes. J. Geom. 43 (1992), 95–107. MR 1148259, 10.1007/BF01245945 |
Reference:
|
[8] Ganter, B., Werner, H.: Co-ordinatizing Steiner systems. Ann. Disc. Math. 7 (1980), 3–24. Zbl 0437.51007, MR 0584400, 10.1016/S0167-5060(08)70167-5 |
Reference:
|
[9] Havel, V. J., Vanžurová, A.: Medial Quasigroups and Geometry. Palacky University Press, Olomouc, 2006. |
Reference:
|
[10] Ihringer, Th.: Allgemeine Algebra. Teubner, Stuttgart, 1988. Zbl 0661.08001, MR 0972980 |
Reference:
|
[11] Lindner, C. C., Rodger, C. A.: Design Theory. CRC Press, London, New York, Washington, 1997. Zbl 0926.68090 |
Reference:
|
[12] Ježek, J., Kepka, T.: Medial Groupoids. Academia, Praha, 1983. MR 0734873 |
Reference:
|
[13] Kárteszi, F.: Introduction to Finite Geometries. Budapest, 1976. MR 0423175 |
Reference:
|
[14] Lenz, H.: Über die Einführung einer absoluten Polarität in die projektive und affine Geometrie des Raumes. Math. Ann. 128 (1954), 363–373. Zbl 0056.13801, MR 0067503, 10.1007/BF01360143 |
Reference:
|
[15] Pflugfelder, H. O.: Quasigroups and Loops, Introduction. Heldermann Verlag, Berlin, 1990. Zbl 0715.20043, MR 1125767 |
Reference:
|
[16] Pukharev, N. K.: On $A^k_n$-algebras and finite regular planes. Sib. Mat. Zhur. 6, 4 (1965), 892–899, (in Russian). |
Reference:
|
[17] Pukharev, N. K.: On construction of $A^k_n$-algebras. Sib. Mat. Zhur. 7, 3 (1966), 724–727, (in Russian). |
Reference:
|
[18] Pukharev, N. K.: Geometric questions of some medial quasigroups. Sib. Mat. Zhur. 9, 4 (1968), 891–897, (in Russian). MR 0238170 |
Reference:
|
[19] Pukharev, N. K.: Some properties of groupoids and quasigroups connected with balanced incomplete block schemes. Quasigroups and Latine squares, Mat. Issl., Kishinev 71 (1983), 77–85, (in Russian). MR 0699124 |
Reference:
|
[20] Romanowska, A., Smith, J. D. H.: Modal Theory, An Algebraic Approach to Order, Geometry, and Convexity. Heldermann Verlag, Berlin, 1985. Zbl 0553.08001, MR 0788695 |
Reference:
|
[21] Romanowska, A., Smith, J. D. H.: Modes. World Scientific, New Jersey, London, Singapore, Hong Kong, 2002. Zbl 1012.08001, MR 1932199 |
Reference:
|
[22] Szamkolowicz, L.: On the problem of existence of finite regular planes. Colloq. Math. 9 (1962), 245–250. Zbl 0106.14302, MR 0142047 |
Reference:
|
[23] Szamkolowicz, L.: Remarks on finite regular planes. Colloq. Math. 10 (1963), 31–37. Zbl 0118.15201, MR 0164273 |
Reference:
|
[24] Šiftar, J.: On affine planes over $A^k_n$-quasigroups. J. Geom. 20 (1983), 1–7. MR 0710059, 10.1007/BF01917989 |
Reference:
|
[25] Stein, S. K.: Homogeneous quasigroups. Pacif. J. Math. 14 (1964), 1091–1102. Zbl 0132.26502, MR 0170972, 10.2140/pjm.1964.14.1091 |
Reference:
|
[26] Szmielew, W.: From Affine to Euclidean Geometry. Polish Scientific Publishers & D. Reidel Publishing Company, Warszawa & Dordrecht–Boston–London, 1983. Zbl 0516.51001, MR 0720548 |
. |