Previous |  Up |  Next

Article

Title: Medial quasigroups of type $(n,k)$ (English)
Author: Vanžurová, Alena
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 49
Issue: 2
Year: 2010
Pages: 107-122
Summary lang: English
.
Category: math
.
Summary: Our aim is to demonstrate how the apparatus of groupoid terms (on two variables) might be employed for studying properties of parallelism in the so called $(n,k)$-quasigroups. We show that an incidence structure associated with a medial quasigroup of type $(n,k)$, $n>k\ge 3$, is either an affine space of dimension at least three, or a desarguesian plane. Conversely, if we start either with an affine space of order $k>2$ and dimension $m$, or with a desarguesian affine plane of order $k>2$ then there is a medial quasigroup of type $(k^m,k)$, $m>2$ such that the incidence structure naturally associated to a quasigroup is isomorphic with the starting one (the simplest case $k=2$ can be examined separately but is of little interest). The proofs are mostly based on properties of groupoid term functions, applied to idempotent medial quasigroups (idempotency means that $x\cdot x=x$ holds, and mediality means that the identity $(xy)(uv)=(xu)(yv)$ is satisfied). (English)
Keyword: Quasigroup
Keyword: idempotent groupoid term
Keyword: mediality
Keyword: incidence structure
Keyword: parallelism
Keyword: affine space
Keyword: desarguesian affine plane
MSC: 05B25
MSC: 20N05
idZBL: Zbl 1236.20066
idMR: MR2796951
.
Date available: 2011-02-18T07:41:56Z
Last updated: 2013-09-18
Stable URL: http://hdl.handle.net/10338.dmlcz/141421
.
Reference: [1] Belousov, V. D.: Transitive distributive quasigroups. Ukr. Mat. Zhur 10, 1 (1958), 13–22.
Reference: [2] Belousov, V. D.: Foundations of the theory of quasigroups and loops. Nauka, Moscow, 1967, (in Russian). MR 0218483
Reference: [3] Bruck, R. H.: A Survey of Binary Systems. Springer, Berlin, 1958. Zbl 0081.01704, MR 0093552
Reference: [4] Denecke., K., Wismath, Sh. L.: Universal Algebra and Applications in Theoretical Computer Science. Chapman and Hall/CRC, 2002. Zbl 0993.08001, MR 1887177
Reference: [5] Duplák, J.: On some permutations of a medial quasigroup. Mat. Čas. 24 (1974), 315–324, (in Russian). MR 0384971
Reference: [6] Duplák, J.: On some properties of transitive quasigroups. Zborník Ped. fak. Univ. Šafárika 1 (1976), 29–35, (in Slovak).
Reference: [7] Duplák, J.: Quasigroups and translation planes. J. Geom. 43 (1992), 95–107. MR 1148259, 10.1007/BF01245945
Reference: [8] Ganter, B., Werner, H.: Co-ordinatizing Steiner systems. Ann. Disc. Math. 7 (1980), 3–24. Zbl 0437.51007, MR 0584400, 10.1016/S0167-5060(08)70167-5
Reference: [9] Havel, V. J., Vanžurová, A.: Medial Quasigroups and Geometry. Palacky University Press, Olomouc, 2006.
Reference: [10] Ihringer, Th.: Allgemeine Algebra. Teubner, Stuttgart, 1988. Zbl 0661.08001, MR 0972980
Reference: [11] Lindner, C. C., Rodger, C. A.: Design Theory. CRC Press, London, New York, Washington, 1997. Zbl 0926.68090
Reference: [12] Ježek, J., Kepka, T.: Medial Groupoids. Academia, Praha, 1983. MR 0734873
Reference: [13] Kárteszi, F.: Introduction to Finite Geometries. Budapest, 1976. MR 0423175
Reference: [14] Lenz, H.: Über die Einführung einer absoluten Polarität in die projektive und affine Geometrie des Raumes. Math. Ann. 128 (1954), 363–373. Zbl 0056.13801, MR 0067503, 10.1007/BF01360143
Reference: [15] Pflugfelder, H. O.: Quasigroups and Loops, Introduction. Heldermann Verlag, Berlin, 1990. Zbl 0715.20043, MR 1125767
Reference: [16] Pukharev, N. K.: On $A^k_n$-algebras and finite regular planes. Sib. Mat. Zhur. 6, 4 (1965), 892–899, (in Russian).
Reference: [17] Pukharev, N. K.: On construction of $A^k_n$-algebras. Sib. Mat. Zhur. 7, 3 (1966), 724–727, (in Russian).
Reference: [18] Pukharev, N. K.: Geometric questions of some medial quasigroups. Sib. Mat. Zhur. 9, 4 (1968), 891–897, (in Russian). MR 0238170
Reference: [19] Pukharev, N. K.: Some properties of groupoids and quasigroups connected with balanced incomplete block schemes. Quasigroups and Latine squares, Mat. Issl., Kishinev 71 (1983), 77–85, (in Russian). MR 0699124
Reference: [20] Romanowska, A., Smith, J. D. H.: Modal Theory, An Algebraic Approach to Order, Geometry, and Convexity. Heldermann Verlag, Berlin, 1985. Zbl 0553.08001, MR 0788695
Reference: [21] Romanowska, A., Smith, J. D. H.: Modes. World Scientific, New Jersey, London, Singapore, Hong Kong, 2002. Zbl 1012.08001, MR 1932199
Reference: [22] Szamkolowicz, L.: On the problem of existence of finite regular planes. Colloq. Math. 9 (1962), 245–250. Zbl 0106.14302, MR 0142047
Reference: [23] Szamkolowicz, L.: Remarks on finite regular planes. Colloq. Math. 10 (1963), 31–37. Zbl 0118.15201, MR 0164273
Reference: [24] Šiftar, J.: On affine planes over $A^k_n$-quasigroups. J. Geom. 20 (1983), 1–7. MR 0710059, 10.1007/BF01917989
Reference: [25] Stein, S. K.: Homogeneous quasigroups. Pacif. J. Math. 14 (1964), 1091–1102. Zbl 0132.26502, MR 0170972, 10.2140/pjm.1964.14.1091
Reference: [26] Szmielew, W.: From Affine to Euclidean Geometry. Polish Scientific Publishers & D. Reidel Publishing Company, Warszawa & Dordrecht–Boston–London, 1983. Zbl 0516.51001, MR 0720548
.

Files

Files Size Format View
ActaOlom_49-2010-2_9.pdf 298.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo