Title:
|
On weakly $s$-permutably embedded subgroups (English) |
Author:
|
Li, Changwen |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
52 |
Issue:
|
1 |
Year:
|
2011 |
Pages:
|
21-29 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Suppose $G$ is a finite group and $H$ is a subgroup of $G$. $H$ is said to be $s$-permutably embedded in $G$ if for each prime $p$ dividing $|H|$, a Sylow $p$-subgroup of $H$ is also a Sylow $p$-subgroup of some $s$-permutable subgroup of $G$; $H$ is called weakly $s$-permutably embedded in $G$ if there are a subnormal subgroup $T$ of $G$ and an $s$-permutably embedded subgroup $H_{se}$ of $G$ contained in $H$ such that $G=HT$ and $H\cap T\leq H_{se}$. We investigate the influence of weakly $s$-permutably embedded subgroups on the $p$-nilpotency and $p$-supersolvability of finite groups. (English) |
Keyword:
|
weakly $s$-permutably embedded subgroups |
Keyword:
|
$p$-nilpotent |
Keyword:
|
$n$-maximal subgroup |
MSC:
|
20D10 |
MSC:
|
20D20 |
idZBL:
|
Zbl 1222.20014 |
idMR:
|
MR2828373 |
. |
Date available:
|
2011-03-08T17:34:17Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141425 |
. |
Reference:
|
[1] Kegel O.H.: Sylow-Gruppen and Subnormalteiler endlicher Gruppen.Math. Z. 78 (1962), 205–221. MR 0147527 |
Reference:
|
[2] Ballester-Bolinches A., Pedraza-Aguilera M.C.: Sufficient conditions for supersolvability of finite groups.J. Pure Appl. Algebra 127 (1998), 113–118. MR 1620696, 10.1016/S0022-4049(96)00172-7 |
Reference:
|
[3] Wang Y.: $c$-Normality of groups and its properties.J. Algebra 180 (1996), 954–965. Zbl 0847.20010, MR 1379219, 10.1006/jabr.1996.0103 |
Reference:
|
[4] Wang Y., Wei H., Li Y.: A generalization of Kramer's theorem and its application.Bull. Austral. Math. Soc. 65 (2002), 467–475. 10.1017/S0004972700020517 |
Reference:
|
[5] Skiba A.N.: On weakly $s$-permutable subgroups of finite groups.J. Algebra 315 (2007), 192–209. Zbl 1130.20019, MR 2344341, 10.1016/j.jalgebra.2007.04.025 |
Reference:
|
[6] Robinson D.J.S.: A Course in the Theory of Groups.Spinger, New York, 1982. Zbl 0836.20001, MR 0648604 |
Reference:
|
[7] Li Y., Qiao S., Wang Y.: On weakly $s$-permutably embedded subgroups of finite groups.Comm. Algebra 37 (2009), 1086–1097. Zbl 1177.20036, MR 2503195, 10.1080/00927870802231197 |
Reference:
|
[8] Doerk K., Hawkes T.: Finite Soluble Groups.Walter de Gruyter, Berlin-New York, 1992. Zbl 0753.20001, MR 1169099 |
Reference:
|
[9] Li Y., Wang Y., Wei H.: On $p$-nilpotency of finite groups with some subgroups $\pi$-quasinormally embedded.Acta. Math. Hungar. 108 (2005), 283–298. Zbl 1094.20007, MR 2164692, 10.1007/s10474-005-0225-8 |
Reference:
|
[10] Asaad M., Heliel A.A.: On $s$-quasinormally embedded subgroups of finite groups.J. Pure Appl. Algebra 165 (2001), 129–135. Zbl 1011.20019, MR 1865961, 10.1016/S0022-4049(00)00183-3 |
Reference:
|
[11] Huppert B.: Endiche Gruppen I.Springer, Berlin, 1968. MR 0224703 |
Reference:
|
[12] Guo W.: The Theory of Classes of Groups.Science Press-Kluwer Academic Publishers, Beijing-Boston, 2000. Zbl 1005.20016, MR 1862683 |
Reference:
|
[13] Guo X., Shum K.P.: On $c$-normal maximal and minimal subgroups of Sylow $p$-subgroups of finite groups.Arch. Math. 80 (2003), 561–569. Zbl 1050.20010, MR 1997521, 10.1007/s00013-003-0810-4 |
Reference:
|
[14] Ramadan M., Mohamed M.E., Heliel A.A.: On $c$-normality of certain subgroups of prime power order of finite groups.Arch. Math. 85 (2005), 203–210. Zbl 1082.20008, MR 2172378, 10.1007/s00013-005-1330-1 |
Reference:
|
[15] Heliel A.A., Alharbia S.M.: The infuence of certain permutable subgroups on the structure of finite groups.Int. J. Algebra 4 (2010), 1209–1218. MR 2772496 |
Reference:
|
[16] Wei H., Wang Y.: On $c^{\ast}$-normality and its properties.J. Group Theory 10 (2007), 211–223. Zbl 1173.20014, MR 2302616 |
Reference:
|
[17] Li S., Li Y.: On $s$-quasionormal and $c$-normal subgroups of a finite group.Czechoslovak. Math. J. 58 (2008), 1083–1095. 10.1007/s10587-008-0070-3 |
Reference:
|
[18] Schmidt P.: Subgroups permutable with all Sylow subgroups.J. Algebra 207 (1998), 285–293. MR 1643106, 10.1006/jabr.1998.7429 |
Reference:
|
[19] Li Y., Qiao S., Wang Y.: A note on a result of Skiba.Siberian Math. J. 50 (2009), 467–473. 10.1007/s11202-009-0052-1 |
Reference:
|
[20] Miao L.: On weakly $s$-permutable subgroups.Bull. Braz. Math. Soc., New Series 41 (2010), 223–235. MR 2738912, 10.1007/s00574-010-0011-2 |
. |