Previous |  Up |  Next

Article

Title: On weakly $s$-permutably embedded subgroups (English)
Author: Li, Changwen
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 52
Issue: 1
Year: 2011
Pages: 21-29
Summary lang: English
.
Category: math
.
Summary: Suppose $G$ is a finite group and $H$ is a subgroup of $G$. $H$ is said to be $s$-permutably embedded in $G$ if for each prime $p$ dividing $|H|$, a Sylow $p$-subgroup of $H$ is also a Sylow $p$-subgroup of some $s$-permutable subgroup of $G$; $H$ is called weakly $s$-permutably embedded in $G$ if there are a subnormal subgroup $T$ of $G$ and an $s$-permutably embedded subgroup $H_{se}$ of $G$ contained in $H$ such that $G=HT$ and $H\cap T\leq H_{se}$. We investigate the influence of weakly $s$-permutably embedded subgroups on the $p$-nilpotency and $p$-supersolvability of finite groups. (English)
Keyword: weakly $s$-permutably embedded subgroups
Keyword: $p$-nilpotent
Keyword: $n$-maximal subgroup
MSC: 20D10
MSC: 20D20
idZBL: Zbl 1222.20014
idMR: MR2828373
.
Date available: 2011-03-08T17:34:17Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141425
.
Reference: [1] Kegel O.H.: Sylow-Gruppen and Subnormalteiler endlicher Gruppen.Math. Z. 78 (1962), 205–221. MR 0147527
Reference: [2] Ballester-Bolinches A., Pedraza-Aguilera M.C.: Sufficient conditions for supersolvability of finite groups.J. Pure Appl. Algebra 127 (1998), 113–118. MR 1620696, 10.1016/S0022-4049(96)00172-7
Reference: [3] Wang Y.: $c$-Normality of groups and its properties.J. Algebra 180 (1996), 954–965. Zbl 0847.20010, MR 1379219, 10.1006/jabr.1996.0103
Reference: [4] Wang Y., Wei H., Li Y.: A generalization of Kramer's theorem and its application.Bull. Austral. Math. Soc. 65 (2002), 467–475. 10.1017/S0004972700020517
Reference: [5] Skiba A.N.: On weakly $s$-permutable subgroups of finite groups.J. Algebra 315 (2007), 192–209. Zbl 1130.20019, MR 2344341, 10.1016/j.jalgebra.2007.04.025
Reference: [6] Robinson D.J.S.: A Course in the Theory of Groups.Spinger, New York, 1982. Zbl 0836.20001, MR 0648604
Reference: [7] Li Y., Qiao S., Wang Y.: On weakly $s$-permutably embedded subgroups of finite groups.Comm. Algebra 37 (2009), 1086–1097. Zbl 1177.20036, MR 2503195, 10.1080/00927870802231197
Reference: [8] Doerk K., Hawkes T.: Finite Soluble Groups.Walter de Gruyter, Berlin-New York, 1992. Zbl 0753.20001, MR 1169099
Reference: [9] Li Y., Wang Y., Wei H.: On $p$-nilpotency of finite groups with some subgroups $\pi$-quasinormally embedded.Acta. Math. Hungar. 108 (2005), 283–298. Zbl 1094.20007, MR 2164692, 10.1007/s10474-005-0225-8
Reference: [10] Asaad M., Heliel A.A.: On $s$-quasinormally embedded subgroups of finite groups.J. Pure Appl. Algebra 165 (2001), 129–135. Zbl 1011.20019, MR 1865961, 10.1016/S0022-4049(00)00183-3
Reference: [11] Huppert B.: Endiche Gruppen I.Springer, Berlin, 1968. MR 0224703
Reference: [12] Guo W.: The Theory of Classes of Groups.Science Press-Kluwer Academic Publishers, Beijing-Boston, 2000. Zbl 1005.20016, MR 1862683
Reference: [13] Guo X., Shum K.P.: On $c$-normal maximal and minimal subgroups of Sylow $p$-subgroups of finite groups.Arch. Math. 80 (2003), 561–569. Zbl 1050.20010, MR 1997521, 10.1007/s00013-003-0810-4
Reference: [14] Ramadan M., Mohamed M.E., Heliel A.A.: On $c$-normality of certain subgroups of prime power order of finite groups.Arch. Math. 85 (2005), 203–210. Zbl 1082.20008, MR 2172378, 10.1007/s00013-005-1330-1
Reference: [15] Heliel A.A., Alharbia S.M.: The infuence of certain permutable subgroups on the structure of finite groups.Int. J. Algebra 4 (2010), 1209–1218. MR 2772496
Reference: [16] Wei H., Wang Y.: On $c^{\ast}$-normality and its properties.J. Group Theory 10 (2007), 211–223. Zbl 1173.20014, MR 2302616
Reference: [17] Li S., Li Y.: On $s$-quasionormal and $c$-normal subgroups of a finite group.Czechoslovak. Math. J. 58 (2008), 1083–1095. 10.1007/s10587-008-0070-3
Reference: [18] Schmidt P.: Subgroups permutable with all Sylow subgroups.J. Algebra 207 (1998), 285–293. MR 1643106, 10.1006/jabr.1998.7429
Reference: [19] Li Y., Qiao S., Wang Y.: A note on a result of Skiba.Siberian Math. J. 50 (2009), 467–473. 10.1007/s11202-009-0052-1
Reference: [20] Miao L.: On weakly $s$-permutable subgroups.Bull. Braz. Math. Soc., New Series 41 (2010), 223–235. MR 2738912, 10.1007/s00574-010-0011-2
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_52-2011-1_2.pdf 222.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo