Previous |  Up |  Next

Article

Title: Boundedness of one-sided fractional integrals in the one-sided Calderón-Hardy spaces (English)
Author: Perini, Alejandra
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 52
Issue: 1
Year: 2011
Pages: 57-75
Summary lang: English
.
Category: math
.
Summary: In this paper we study the mapping properties of the one-sided fractional integrals in the Calderón-Hardy spaces $\mathcal{H}_{q,\alpha}^{p,+}(\omega)$ for $0< p\leq 1$, $0< \alpha < \infty $ and $1< q< \infty $. Specifically, we show that, for suitable values of $p,q,\gamma, \alpha$ and $s$, if $\omega \in A_s^+$ (Sawyer's classes of weights) then the one-sided fractional integral $I_{\gamma }^+$ can be extended to a bounded operator from $\mathcal{H}_{q,\alpha}^{p,+}(\omega)$ to $\mathcal{H}_{q,\alpha + \gamma}^{p,+}(\omega)$. The result is a consequence of the pointwise inequality $$ N_{q, \alpha +\gamma}^+\left( I_{\gamma }^+ F;x\right) \leq C_{\alpha,\gamma } N_{q, \alpha}^+ \left( F;x\right), $$ where $N_{q, \alpha}^+ (F;x)$ denotes the Calderón maximal function. (English)
Keyword: fractional integral
Keyword: maximal
Keyword: one-sided Calderón-Hardy
Keyword: one-sided weights spaces
MSC: 42B20
MSC: 42B35
idZBL: Zbl 1240.42061
idMR: MR2828370
.
Date available: 2011-03-08T17:37:04Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141428
.
Reference: [1] Calderón A.P.: Estimates for singular integral operators in terms of maximal functions.Studia Math. 44 (1972), 563–582. MR 0348555
Reference: [2] Gatto A., Jiménez J.G., Segovia C.: On the solution of the equation $\Delta^m F = f$ for $f\in H^p$.Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. II (Chicago, 1981), Wadsworth Math. Ser., Wadworth, Belmont, CA, 1983. MR 0730054
Reference: [3] Grafakos L.: Classical and Modern Fourier Analysis.Pearson Education, Inc., Upper Saddle River, NJ, 2004. Zbl 1148.42001, MR 2449250
Reference: [4] Harboure E., Salinas O., Viviani B.: Acotación de la integral fraccionaria en espacios de Orlicz y de oscilación media $\phi$ acotada.Actas del 2do. Congreso Dr. A. Monteiro, Bahía Blanca, 1997, pp. 41–50. MR 1253076
Reference: [5] Martín-Reyes F.J.: New proof of weighted inequalities for the one-sided Hardy-Littlewood maximal functions.Proc. Amer. Math. Soc. 117 (1993), 691–698. MR 1111435
Reference: [6] Martín-Reyes F.J., Ortega P., de la Torre A.: Weighted inequalities for the one-sided maximal functions.Trans. Amer. Math. Soc. 319 (1990), 517–534. MR 0986694
Reference: [7] Ombrosi S.: On spaces associated with primitives of distributions in one-sided Hardy spaces.Rev. Un. Mat. Argentina 42 (2001), no. 2, 81–102. Zbl 1196.42023, MR 1969626
Reference: [8] Ombrosi S.: Sobre espacios asociados a primitivas de distribuciones en espacios de Hardy laterales.Ph.D. Thesis, Universidad Nacional de Buenos Aires, 2002.
Reference: [9] Ombrosi S., de Rosa L.: Boundeness of the Weyl fractional integral on the one-sided weighted Lebesque and Lipchitz spaces.Publ. Mat. 47 (2003), no. 1, 71–102. MR 1970895
Reference: [10] Ombrosi S., Segovia C.: One-sided singular integral operators on Calderón-Hardy spaces.Rev. Un. Mat. Argentina 44 (2003), no. 1, 17–32. Zbl 1078.42008, MR 2051035
Reference: [11] de Rosa L., Segovia C.: Weighted $H^{p}$ spaces for one sided maximal functions.Contemp. Math., 189, American Mathematical Society, Providence, RI, 1995, pp. 161–183. 10.1090/conm/189/02262
Reference: [12] Sawyer E.: Weighted inequalities for the one-sided Hardy-Littlewood maximal functions.Trans. Amer. Math. Soc. 297 (1986), 53–61. Zbl 0627.42009, MR 0849466, 10.1090/S0002-9947-1986-0849466-0
Reference: [13] Stein E.: Singular Integrals and Differentiability Properties of Functions.Princeton University Press, Princeton, N.J., 1970. Zbl 0281.44003, MR 0290095
Reference: [14] Zygmund A.: Trigonometric Series.Cambridge University Press, Cambridge, 1959. Zbl 1084.42003, MR 0107776
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_52-2011-1_5.pdf 292.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo